Abstract:
A catalyst composition, a method for its preparation and a hydrotreating process using same. The catalyst comprises a rigidly interconnected pack of irregularly shaped particles having an average diameter below 0.15 mm. Among the particles and throughout the pack are access channels comprising interconnected macropores having diameters in the 0.1 to 15 micron range which contribute at least 5 percent of the pore volume. The particles comprise materials selected from the group consisting of at least one refractory oxide component and one hydrogenation component. For each 100 parts of the oxide component the composition contains, in parts by weight, an amount of the hydrogenating component, calculated as metal, in the range from 0.1 to 50 parts.
Abstract:
A method for producing high-porosity, high-surface area, lowbulk density alumina by drying aqueous alumina mixtures with an alkanol vapor. The alumina product after drying has a surface area from about 260 to 400 m2/g, a pore volume from about 1.0 to about 2.75 cc/g, and a loose-bulk density from about 7.5 to about 25 lb/ft3. The alkanol vapor is selected from the vapors of alkanols containing from about 1 to about 8 carbon atoms.
Abstract:
The present disclosure discloses a porous ammonia synthesis catalyst, its preparation method and use, which are suitable for catalyzing ammonia synthesis reaction by using nitrogen and hydrogen as raw materials. The porous ammonia synthesis catalyst is a novel ammonia synthesis catalyst material prepared by taking metal coordination compound as template, uniformly dispersing the metal coordination compound in silica gel through a sol-gel method, then carrying out hydrothermal aging, and finally controlling calcination conditions. Compared with traditional synthetic ammonia catalysts, the porous ammonia synthesis catalyst has uniform pore distribution, easily regulated pore size, large specific surface area, easily regulated aggregation degree of metal active centers, particle size, distribution, structure and composition, high ammonia synthesis catalytic efficiency, ammonia synthesis catalysis under mild reaction conditions, high stability, low catalyst preparation cost, which can completely replace existing ammonia synthesis industrial catalysts.
Abstract:
The present invention discloses methods for producing a guest@nanoporous-host materials, and guest@nanoporous-host materials produced according to these methods. Methods according to the invention comprise steps of infiltrating a nanoporous host material with one or more reagents and a target guest precursor in a reaction environment such that a reaction occurs to form the target guest species within the pores of the nanoporous host material. The reagent comprise either a redox reagent and/or a pH modulator. By analysis of appropriate electrochemical potential-pH diagrams and careful selection of suitable reagents and control of process conditions to produce desired target guest particles from selected target guest precursors, the synthesis strategy to form the guests can be more flexible and versatile than known methods, because typically milder reaction conditions can be used than in such known methods.
Abstract:
A process of producing a catalyst comprises forming mesoporous beta zeolite particles, impregnating mesoporous beta zeolite particles with a metal and phosphorus to produce a metal and phosphorus impregnated zeolite, and incorporating the metal and phosphorus impregnated zeolite with clay and alumina to produce the catalyst. The forming step comprises converting a crystalline beta zeolite to a non-crystalline material with reduced silica content relative to the crystalline beta zeolite, and crystalizing the non-crystalline material to produce mesoporous beta zeolite particles.
Abstract:
The present disclosure relates to a composition that includes copper (Cu), aluminum (Al), oxygen, and an element (M) that includes at least one of magnesium, cerium, and/or a transition metal, where the copper and the element are present at a first molar ratio relative to the aluminum between about 0.1:1 and about 30:1 ((Cu+M):Al), and the copper and the element are present at a second molar ratio between about 0.1:4 and about 20:1 (Cu:M).
Abstract:
Embodiments of the present disclosure are directed to hydrocracking catalysts and methods of making same. The hydrocracking catalyst comprises a platinum encapsulated zeolite having a crystallinity greater than 20% determined by X-ray powder diffraction analysis.
Abstract:
A metal oxide catalyst synthesized using supercritical carbon dioxide extraction is provided, wherein the metal oxide catalyst includes an active site containing at least one type of metal oxide and a support for loading the active site and the metal oxide is an oxide of a metal selected from the group consisting of transition metals (atomic number 21 to 29, 39 to 47, 72 to 79, or 104 to 108), lanthanide (atomic number 57 to 71), post-transition metals (atomic number 13, 30 to 31, 48 to 50, 80 to 84, and 112), and metalloids (atomic number 14, 32 to 33, 51 to 52, and 85) in the periodic table, and a combination thereof.
Abstract:
The present invention provides a process to prepare middle distillates and base oils from a Fischer-Tropsch product, by (a) subjecting the Fischer-Tropsch product to a hydroprocessing step in the presence of a catalyst comprising a molecular sieve with a pore size between 5 and 7 angstrom and a SiO2/AlO3 ratio of at least 25, preferably from 50 to 180 and a group VIII metal to obtain a mixture comprising one or more middle distillate fractions and a first residual fraction and a naphtha fraction; (b) separating the mixture as obtained in step (a) by means of atmospheric distillation into one or more middle distillate fractions, a first residual fraction and a naphtha fraction; (c) separating the first residual fraction by means of vacuum distillation into at least a distillate base oil fraction and a second residual fraction.
Abstract:
Provided is a structured catalyst for hydrodesulfurization that suppresses the decline in catalytic activity and achieves efficient hydrodesulfurization. The structured catalyst for hydrodesulfurization (1) includes a support (10) of a porous structure composed of a zeolite-type compound, and at least one catalytic substance (20) present in the support (10), the support (10) having channels (11) connecting with each other, and the catalytic substance (20) being present at least in the channels (11) of the support (10).