Abstract:
A process for producing a glass body, the process including flowing oxygen gas from a burner in a furnace at a flow rate of greater than 12.0 standard liters per minute and flowing a precursor gas mixture from the burner. The process further including oxidizing the precursor gas mixture with the oxygen gas to form glass particles and depositing the glass particles on a collection cup to form the glass body.
Abstract:
A doped silica-titania (“DST”) glass article that includes a glass article having a glass composition comprising a silica-titania base glass containing titania at 7 to 14 wt. % and a balance of silica, and a dopant selected from the group consisting of (a) F at 0.7 to 1.5 wt. %, (b) B2O3 at 1.5 to 5 wt. %, (c) OH at 1000 to 3000 ppm, and (d) B2O3 at 0.5 to 2.5 wt. % and OH at 100 to 1400 ppm. The glass article has an expansivity slope of less than about 1.3 ppb/K2 at 20° C. For DST glass articles doped with F or B2O3, the OH level can be held to less than 10 ppm, or less than 100 ppm, respectively. In many aspects, the DST glass articles are substantially free of titania in crystalline form.
Abstract:
Silica-titania glasses with small temperature variations in coefficient of thermal expansion over a wide range of zero-crossover temperatures and methods for making the glasses. The method includes a cooling protocol with controlled anneals over two different temperature regimes. A higher temperature controlled anneal may occur over a temperature interval from 750° C.-950° C. or a sub-interval thereof. A lower temperature controlled anneal may occur over a temperature interval from 650° C.-875° C. or a sub-interval thereof. The controlled anneals permit independent control over CTE slope and Tzc of silica-titania glasses. The independent control provides CTE slope and Tzc values for silica-titania glasses of fixed composition over ranges heretofore possible only through variations in composition.
Abstract:
A device for manufacturing SiO2—TiO2 based glass by growing a glass ingot upon a target by a direct method. The device includes the target, comprising a thermal storage portion that accumulates heat by being preheated, and a heat insulating portion that suppresses conduction of heat from the thermal storage portion in a direction opposite to the glass ingot.
Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
On an EUV light-reflecting surface of titania-doped quartz glass, an angle (θ) included between a straight line connecting an origin (O) at the center of the reflecting surface to a birefringence measurement point (A) and a fast axis of birefringence at the measurement point (A) has an average value of more than 45 degrees. Since fast axes of birefringence are distributed in a concentric fashion, a titania-doped quartz glass substrate having a high flatness is obtainable which is suited for use in the EUV lithography.
Abstract:
Silica-titania glasses with small temperature variations in coefficient of thermal expansion over a wide range of zero-crossover temperatures and methods for making the glasses. The method includes a cooling protocol with controlled anneals over two different temperature regimes. A higher temperature controlled anneal may occur over a temperature interval from 750° C.-950° C. or a sub-interval thereof. A lower temperature controlled anneal may occur over a temperature interval from 650° C.-875° C. or a sub-interval thereof. The controlled anneals permit independent control over CTE slope and Tzc of silica-titania glasses. The independent control provides CTE slope and Tzc values for silica-titania glasses of fixed composition over ranges heretofore possible only through variations in composition.
Abstract:
Titania-doped quartz glass is manufactured by mixing a silicon-providing reactant gas and a titanium-providing reactant gas, preheating the reactant gas mixture at 200-400° C., and subjecting the mixture to oxidation or flame hydrolysis. A substrate of the glass is free of concave defects having a volume of at least 30,000 nm3 in an effective region of the EUV light-reflecting surface and is suited for use in the EUV lithography.
Abstract:
A glass article for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass article includes a silica-titania glass having a compositional gradient through the glass article, the compositional gradient being defined by the functions: [TiO2]=(c+f(x,y,z)), and [SiO2]=(100−{c+f(x,y,z)}−δ(x,y,z)) wherein [TiO2] is the concentration of titania in wt. %, [SiO2] is the concentration of silica in wt. %, c is the titania concentration in wt. % for a predetermined zero crossover temperature (Tzc), f(x, y, z) is a function in three-dimensional space that defines the difference in average composition of a volume element centered at the coordinates (x, y, z) with respect to c, and δ(x, y, z) is a function in three-dimensional space that defines the sum of all other components of a volume element centered at the coordinates (x, y, z).
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.