Abstract:
A solid state detection system includes a degenerate photo-parametric amplifier (PPA), wherein the PPA comprises a photo diode, and a periodically pulsed light source, wherein the photo-parametric, amplifier (PPA) is synchronized to the pulsed light source with a phase locked loop that generates a pump waveform for the PPA at twice the frequency of the excitation pulse rate.
Abstract:
A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Abstract:
Embodiments relate to photoreceivers, such as photodiodes. In one embodiment, an integrated circuit device comprises a photodiode, and an electrode arranged over or on top of the photodiode. The electrode is substantially transparent or otherwise exhibits a lower absorption rate, such that light or other radiation can pass through the electrode to the photodiode. Varying a charge applied to the electrode enables the spectral sensitivity of the underlying photodiode to be altered, tuned or otherwise adjusted.
Abstract:
Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.
Abstract:
A modular device includes base and color sensing portions. The color sensing portion has a face, a controlled light source offset from the face to define an interior, the face configured to engage a target surface about a perimeter of the device housing wherein ambient light is restricted from entering the interior. A color sensor receives light reflected from the target surface and generates output signals representative of a surface color. The base portion communicates with the color sensor and a user device having a hosted program which generates a user interface enabling users to provide control input for the color sensor. The program further receives the output signals from the color sensing device and displays a first image of the detected color, and displays a second image of a user-selected color beside the first image. Color data values are further displayed corresponding to the difference between displayed colors.
Abstract:
The present invention may include loading a diagnostic sample onto a sample stage, focusing light from an illumination source disposed on a multi-axis stage onto the diagnostic sample, collecting a portion of light reflected from a surface of the diagnostic sample utilizing a detector, wherein the illumination source and the detector are optically direct-coupled via an optical system, acquiring a set of diagnostic parameters indicative of illumination source position drift from the diagnostic sample, determining a magnitude of the illumination source position drift by comparing the acquired set of diagnostic parameters to an initial set of parameters obtained from the diagnostic sample at a previously measured alignment condition, determining a direction of the illumination source position drift; and providing illumination source position adjustment parameters configured to correct the determined magnitude and direction of the illumination source position drift to the multi-axis actuation control system of the multi-axis stage.
Abstract:
The method and system may be used to provide an indication of a color value for a particular siding sample and to color match a specific siding product to the color value of the siding sample. The system receives a digital image of a siding sample and a desired color value to be matched. A color query module plots this desired color value as a desired color point in a multidimensional color space together with a plurality of color reference points. Each color reference point represents the color value of an existing siding product. The system determines a “distance” between the desired color point and each plotted color reference point within the color space and identifies the siding product associated with the color reference point that is located the shortest distance to the desired color point within the color space.
Abstract:
The present application describes techniques to image biological tissue to determine biological information of an imaged tissue sample such as changes in hemoglobin concentrations, blood flow rate (pulse), and/or spatio-temporal features. Embodiments include illuminating the tissue sample with light in the near-infrared (NIR) spectrum, which is minimally absorbed but scattered through the tissue sample. By detecting the NIR light that is attenuated through, transmitted through, and/or reflected off the tissue to be imaged, the resulting NIR intensity signals may be further analyzed to provide this data. Embodiments include using multiple NIR light sources having varying wavelengths to obtain changes in the oxy- and deoxy-hemoglobin concentrations of the imaged tissue region. The tissue sample may be imaged over a time period, and the NIR images may be viewed statically or in real time after post-processing analyses have been performed.
Abstract:
Disclosed are an apparatus and method that measure and analyze the colors of skin based on a spectrum before and after the application of makeup, and then estimate spectral variations in skin before and after the application of makeup and simulate color of any skin after the application of makeup. The makeup color simulation apparatus acquires a spectral image from a captured skin image. Spectral variations in skin before and after application of makeup are estimated. A spectral variation model is created based on the estimated spectral variations, and spectral data of skin varied after application of makeup is calculated based on the spectral variation model. The spectral data of the skin is converted into CIE XYZ color values. The CIE XYZ color values are converted depending on input/output characteristics of an image display unit, and a final image corresponding to results of the conversion is simulated.
Abstract:
A solid state detection system includes a degenerate photo-parametric amplifier (PPA), wherein the PPA comprises a photo diode, and a periodically pulsed light source, wherein the photo-parametric, amplifier (PPA) is synchronized to the pulsed light source with a phase locked loop that generates a pump waveform for the PPA at twice the frequency of the excitation pulse rate.