Abstract:
The present invention provides a spectroscopic system as well as a method of autonomous tuning of a spectroscopic system and a corresponding computer program product. By detecting the position of return radiation in a transverse plane of an aperture of a spectroscopic analysis unit, a control signal can be generated that allows to drive servo driven translation or tilting stages of optical components. In this way a transverse misalignment of a spectroscopic system can be effectively detected. Generally, a plurality of different detection schemes are realizable allowing for an autonomous, tuning of the spectroscopic system and for autonomous elimination of misalignment of a spectroscopic system.
Abstract:
An optical measurement apparatus which includes at least one each of a light source, an optical element, a photodetector, and a sample container, and which measures a physical property of a biological sample in a solution retained by the sample container according to a plurality of kinds of measurement items, wherein a combination of the light source, the optical element, and the photodetector is selected or changed according to the measurement item, and a position where the photodetector is located is adjusted according to the selection or change based on intensity of light accepted by the photodetector.
Abstract:
A remote sensing device and method operable for detecting and analyzing gases, vapors and flame plumes using imaging. The gas imaging instrument includes a gas-leak imaging device, for example, an Image Multispectral Sensing (IMSS) device (10), enhanced by advanced image processing techniques and micro-miniature circuitry, and includes a GPS (21), a clock and computer means (24) that are collectively operable for logging positional, temporal and gas-leak data. These enhancements provide a portable instrument with the capability to not only remotely detect and image gases, including gas leaks, but additionally provide a record of the position and time the spectrometric gas-leak data were collected in a single device (camera) (25).
Abstract:
A measurement system obtains a predetermined estimated value, using multiple measurement data. The measurement system includes a measuring section for acquiring measurement data with respect to a measurement object, a display section for displaying indication concerning a measurement, a display controller, a measurement controller, a storing section for storing the measurement data, a computing section for obtaining the estimated value based on the measurement data, and a checking section for checking whether a required number of measurement data has been acquired. The display controller causes the display section to display first information relating to measurement elements required for acquiring the measurement data, including individual selection information of the measurement elements; and second information, to be displayed in association with the selection information, for allowing an operator to recognize whether the measurement has been completed. The measurement controller causes the selection information to function as a site for accepting a command indicating start of the measurement of the measurement element relating to the individual selection information.
Abstract:
Method and apparatus for analyzing radiation using analyzers and employing the spatial modulation of radiation dispersed by wavelength or along a line.
Abstract:
An apparatus for enhancing the selectivity for spectroscopic measurements of analytes in a turbid medium is described. In one example, spatial filters are used to select only certain radii from the medium to be imaged. This selection is accomplished by placing an optical obstruction on the surface of the medium or at an image plane of the surface later in the optical imaging system. In one implementation, this is achieved by placing a fiber bundle at an image plane of the collecting optical system and then using a spacer of appropriate size at the center of the fiber bundle to act as a central obstruction.
Abstract:
The present invention is directed to apparatus and method for measuring the spectral characteristics of an object surface. The apparatus comprises a light source for generating an input signal comprising a plurality of wavelengths of energy and a diffraction grating for diffracting the input signal into a plurality of diffracted wavelengths of energy. A resonant mirror assembly associated with the diffraction grating sequentially directs a select diffracted wavelength to the object surface to generate a corresponding reflected wavelength of energy. The apparatus further comprises a sensor for determining each select diffracted wavelength of energy directed to the object surface and a detector for detecting one or more of the reflected wavelengths. The detector is coupled with the sensor for associating each select diffracted wavelength with each corresponding reflected wavelength.
Abstract:
A target-seeking-and-tracking system featuring hyperspectral sensing performed by a tunable filter and an infrared focal plane array is programmable to collect and process several hyperspectral bands of infrared radiation emanating from a target scenery. The programming is done by tuning the filter from time to time to collect several hyperspectral bands containing image data corresponding to several objects of interest in the scenery. The image data is further processed in the target recognition unit to identify the objects and aid in the selection and tracking of a particular target object for the ultimate goal of accurate destruction of the object. The programmability of hyperspectral sensing provides a degree of countermeasures immunity by allowing several bands to be combined to achieve the best signal-to-clutter ratio.
Abstract:
The invention employs a linear variable interference filter, which can be manually moved back and forth along its long axis in front of a slit parallel to its short axis. Thus, the filter pass-band varies linearly from 4,000 angstroms to 10,000 angstroms with a pass-band half-width no greater than 65 angstroms. Therefore, this combination of filter and slit can be placed in front of a charge coupled device (CCD) or other electro-optical imaging device and real time images can be taken as the filter is slid back and forth. Magnifying optics, beam-splitters and scale illuminators can be used to make the scale visible within the field of view of the camera imager. Or, as a simpler embodiment, the graduated image scale could in the form of a hologram of a graduated image scale taken at distance consistent with the desired depth of focus of the camera/imager.
Abstract:
An LED-based color measurement instrument including an illumination system and a sensing system. The illumination system includes modulated LEDs and a temperature control system for regulating the temperature of the LEDs, thereby improving the consistency of their performance. The sensing system includes a photodiode, a transimpedance amplifier, and an integrator in the first stage to cancel the effect of ambient light on the output of the first stage. The sensing system also includes a lens system for imaging a target area of the target sample onto the photo sensor in a manner so that the product of the target area times the solid angle captured by the lens system is generally uniform over a selected range of distances, thereby reducing the positional sensitivity of the instrument with respect to the target sample.