Abstract:
An interferometer system comprising an optical detector including a substrate and a two-dimensional array of pixels disposed on the substrate is provided. The interferometer system may further comprise an interferometer disposed proximate the optical detector without an optical element between the interferometer and the optical detector. The interferometer may include a first plate positioned proximate the substrate and extending over the two-dimensional array of pixels, a second plate spaced apart from the first plate, the first and second plates defining an optical gap between them, and at least one actuatable spacer positioned between the first plate and the second plate and configured to space apart the first and second plates from one another and to selectively alter a thickness of the optical gap.
Abstract:
Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon.
Abstract:
A measuring device includes a first light receiving element that receives measurement light and outputs a first output value, and a second light receiving element that receives the measurement light and outputs a second output value which is different from the first output value. A weighted composition is performed on the first output value and the second output value.
Abstract:
An operating value of a first laser parameter of a laser device in a laser absorption spectrometer is optimized. The wavelength of laser device emitted light is adjusted by the first or a second laser parameter. The laser absorption spectrometer comprises a light intensity detector measuring the laser light intensity from the laser device. For each of multiple values of the first laser parameter: the light intensity detector measures light intensity obtained across a range of second laser parameter values, and an extremum in the light intensity measure and a peak position for the extremum are identified. A range of first laser parameter values is identified within the values of the first laser parameter for which there is a continuous trend in changes to the identified peak position with changes to the first laser parameter. The first laser parameter operating value is set to be within the identified range.
Abstract:
An optical pressure sensor is disclosed having a pressure sensing optical cavity. A temperature sensing optical cavity at the sensor head is used by an interrogator to correct a pressure signal for effects of temperature. The optical cavities may be, for example, Fabry Perot cavities in the sensor head.
Abstract:
The invention is directed to a device and method for conducting measurement of a Doppler shift caused by molecular and aerosol movement while simultaneously providing measurement of temperature using LIDAR. The device incorporates a light source; and a Fabry-Perot etalon having a resonant cavity formed with two plane parallel reflecting surfaces, wherein the light source is positioned relative to the a Fabry-Perot etalon such that light is injected into a plane parallel resonant cavity of the Fabry-Perot etalon at an angle of incidence other than normal to the reflecting surfaces. The Fabry-Perot etalon may be formed with each of the parallel reflecting surfaces having different reflectivities. The light source may be positioned to direct the light to bypass a first reflective surface of the plane parallel resonator cavity, and/or implemented using a divergent light source. In addition, the Fabry-Perot etalon may be formed to include an aperture in at least one mirror surface or an edge portion in at least one mirror surface through which the light is directed into the resonant cavity. The device may also incorporate a detector for detecting a fringe pattern outputted by the Fabry-Perot etalon.
Abstract:
A spectroscopic measurement apparatus includes an actuator that is driven by applying a drive voltage, a gap detector that detects a dimension of a gap, and a voltage control section including a feedback loop that controls the drive voltage depending on a detection result of the gap detector. The voltage control section includes a comparator that outputs a voltage signal at a High level VH if an absolute value of a deviation between a drive amount of the actuator and a setting value of the drive amount exceeds a predetermined threshold based on the detection result after a predetermined time elapses from the start of driving of the actuator.
Abstract:
A Fabry-Perot interference filter 10A includes a first mirror 31; a second mirror 41 being opposite to the first mirror 31 with a gap S therebetween; a first electrode 17 formed in the first mirror 31 to surround a light transmission region 11; a second electrode 18 formed in the first mirror 31 to include the light transmission region 11; and a third electrode 19 formed in the second mirror 41 to be opposite to the first electrode 17 and the second electrode 18 and connected to the same potential as the second electrode 18. The second electrode 18 is positioned at the side of the third electrode 19 or the opposite side thereof with respect to the first electrode 17 in an opposite direction D where the first mirror 31 and the second mirror 41 are opposite each other.
Abstract:
An imager contains an image sensor with laterally varying spectral response. The imager is scanned over a scene or object to form a spectral image. The spectral responses are repeated at different positions in the field of view so as to reduce the effect of scene nonidealities, such as angle dependence or temporal variation, on the spectral image data. A part of the image sensor may be used for conventional two-dimensional imaging. This part of the image sensor may be used to estimate the scene geometry and scan movement, enabling further improvement in the spectral integrity.
Abstract:
The present disclosure relates to systems, methods, and sensors configured to characterize a radiation beam. At least one embodiment relates to an optical system. The optical system includes an optical radiation guiding system. The optical radiation guiding system includes a collimator configured to collimate the radiation beam into a collimated radiation beam. The optical radiation guiding system also includes a beam shaper configured to distribute power of the collimated radiation beam over a discrete number of line shaped fields. A spectrum of the collimated radiation beam entering the beam shaper is delivered to each of the discrete number of line shaped fields. The optical system further includes a spectrometer chip. The spectrometer chip is configured to process the spectrum of the collimated radiation beam in each of the discrete number of line shaped fields coming from the beam shaper.