Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
A sensor having an input to an interferometer. The input may receive emissions from a detected fluid. The output of the interferometer may be focused on an array of light detectors. Electrical signals from the detectors may go to a processor. The output of the processor may include a spectrum of the detected fluid. Also, the identity of the fluid may be determined.
Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
The invention aims to integrate a two-wave stationary interferometer on a photodetector during fabrication in order to constitute a miniature stationary Fourier transform spectrometer. The interferometer essentially comprises a plate having a first plane face coinciding with an image plane on semiconductor photosensitive elements and a second face that is not parallel to the first face. The second face reflects a wave that has a phase difference relative to the incident wave interfering with it that is a function of the local thickness of the plate.
Abstract:
The interferometric device for performing spectroscopic measurements includes a rectangular array of interferometers, each consisting of two partially transparent parallel mirrors arranged so that a distance between the two mirrors of each interferometer is unique; an array (9) of photodetectors positioned behind the rectangular array of interferometers to produce output signals and a device for transforming these output signals to produce a spectrum. In one embodiment the interferometers are formed by two parallel plates (1,2) having the two flat surfaces (3, 4) facing away from each other and two facing surfaces (5,6) each provided with steps (11) of identical step height, but with the step height on one plate differing from the step height on the other and with the two plates (1,2) assembled together so that the steps (11) on the one plate are oriented perpendicularly to the steps (11) on the other. In another embodiment the interferometers are formed by a first parallel plate (12) having two opposing flat sides and a second parallel plate (13) having a first flat side and a second side remote from the first flat side provided with steps (17) of identical height arranged in rows between two opposing narrow sides (18,19) so that a last step next to one narrow side in one row follows a first step in a preceding row next to the other narrow side.
Abstract:
State of the art Fourier transform spectrometers are useful scientific tools. But, they are very complex precision electro-optical-mechanical instruments. To simplify the instrument, the need for a mechanical slide mechanism to create a path difference has been eliminated by the use of retro-reflecting mirrors (16, 18) in a monolithic interferometer assembly (11) wherein the mirrors (16, 18) are not at 90 degrees to the propagation vector (29, 43) of the radiation (27), but rather at a small angle (49). The resulting interference fringes (51, 53) create a double-sided interferogram (33) of the source irradiance distribution which is detected by a charge-coupled device (CCD) array (23). The position of each CCD pixel (25) in the array is an indication of the path difference between the two retro-reflecting mirrors (16, 18) in the monolithic optical structure. The Fourier transform of the signals generated by the CCD array (23) provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly (11) scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, e.g., a spacecraft. During scanning, the entrance slot (21) to the monolithic optical structure send different pixels to corresponding interferograms detected by adjacent columns of pixels at the CCD array (23).
Abstract:
An optical device includes a liquid-crystal variable retarder. An exit-pupil expander is optically coupled to the liquid-crystal variable retarder, the exit-pupil expander includes: at least one optical input feature that receives reference light from a reference light source; and one or more optical coupling elements coupled to receive the reference light from the reference light source and expand the reference light to one or more spatially-separated regions of the liquid-crystal variable retarder
Abstract:
A voltage is applied to a liquid-crystal variable retarder that monotonically changes a retardance and changes a first derivative with respect to time of the retardance of the liquid-crystal variable retarder over a time period. An interferogram of light passing through the liquid-crystal variable retarder is measured during the time period.
Abstract:
A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
Abstract:
A spectrometer includes a beam splitter that receives incident light rays and splits each of the incident light rays into first and second spatially displaced, linearly polarized light rays that respectively have first and second polarization directions orthogonal to each other; an optical member that receives the split incident light rays from the beam splitter and optically converts the split incident light rays into a plurality of light beams that are respectively guided to mutually differing locations so as to generate interference fringes in the respective locations, each of the plurality of light beams including a component of the first linearly polarized light rays and a component of the second linearly polarized light rays; and a detector that detects the interference fringes respectively generated by the plurality of light beams.