Abstract:
The present invention relates, in general, to a deflector for microcolumns for generating electron beams, and, more particularly, to a deflector capable of scanning or shifting electron beams or functioning as a stigmator using a magnetic field. The deflector (100) according to the present invention includes one or more deflector electrodes. Each of the deflector electrodes includes a core (12) made of a conductor or a semiconductor, and a coil (11) wound around the core (12).
Abstract:
An electron beam processing device includes a chamber housing that defines a chamber interior space and has a first opening. A carriage is movable along the first opening. An electron beam generator is disposed on the carriage so that the generated electron beam passes through the first opening when the carriage moves along the first opening. A disk is disposed between the chamber housing and the carriage and is rotatable about a rotational axis, which is perpendicular to the first opening, at least between a first rotational position and a second rotational position. The disk has a second opening spaced from the rotational axis of the disk in the radial direction. The rotational axis of the disk is disposed so that the first opening always overlaps the second opening at least along an electron beam propagation axis when the disk rotates between the first and second rotational positions.
Abstract:
An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. A two-path beamline in which a second path incorporates a deceleration or acceleration system incorporating energy filtering is disclosed. Finally, methods of ion implantation are disclosed in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning.
Abstract:
There is proposed an apparatus for doping a material to be doped by generating plasma (ions) and accelerating it by a high voltage to form an ion current is proposed, which is particularly suitable for processing a substrate having a large area. The ion current is formed to have a linear sectional configuration, and doping is performed by moving a material to be doped in a direction substantially perpendicular to the longitudinal direction of a section of the ion current.
Abstract:
A technique for improving uniformity of a ribbon beam is disclosed. In one particular exemplary embodiment, an apparatus may comprise a first corrector-bar assembly and a second corrector-bar assembly, wherein the second corrector-bar assembly is located at a predetermined distance from the first corrector-bar assembly. Each of a first plurality of coils in the first corrector-bar assembly may be individually excited to deflect at least one beamlet in the ribbon beam, thereby causing the beamlets to arrive at the second corrector-bar assembly in a desired spatial spread. Each of a second plurality of coils in the second corrector-bar assembly may be individually excited to further deflect one or more beamlets in the ribbon beam, thereby causing the beamlets to exit the second corrector-bar assembly at desired angles.
Abstract:
It is to prevent an image drift from occurring caused by a specimen being charged when observing the specimen including an insulating material.A first scan is performed in a predetermined direction on scanning line and in a predetermined sequential direction of scanning lines and a second scan is performed in a scanning direction different from the predetermined scanning direction and in a sequential direction different from the predetermined sequential direction. An image may be created by repeating the process of executing the second scan after executing the first scan and by requiring the arithmetic average of the frames obtained by the second scans. An image may be created by averaging arithmetically at least one frame obtained by the first scan and at least one frame obtained by the second scan.
Abstract:
A charged particle system comprises a particle source for generating a beam of charged particles and a particle-optical projection system. The particle-optical projection system comprises a focusing first magnetic lens (403) comprising an outer pole piece (411) having a radial inner end (411′), and an inner pole piece (412) having a lowermost end (412′) disposed closest to the radial inner end of the outer pole piece, a gap being formed by those; a focusing electrostatic lens (450) having at least a first electrode (451) and a second electrode (450) disposed in a region of the gap; and a controller (C) configured to control a focusing power of the first electrostatic lens based on a signal indicative of a distance of a surface of a substrate from a portion of the first magnetic lens disposed closest to the substrate.
Abstract:
An electron microscope includes an illuminating lens system that illuminates an electron beam that is emitted from an electron source onto a specimen as a planar illuminating electron beam having a two-dimensional spread, an imaging lens system that projects and magnifies the reflecting electron beam emitted from the specimen to project and form a specimen image, a beam separator that separates the illuminating electron beam from the reflecting electron beam, and a controller. The controller controls the reflecting electron beam so as to go straight through the beam separator, and the illuminating electron beam so as to keep a deflection angle of the illuminating electron beam which is made by the beam separator substantially constant.
Abstract:
A charged-particle beam system has a demagnifying lens for reducing the dimensions of an electron beam produced from an electron beam source, an objective lens for focusing the demagnified beam onto the surface of a target, a first deflector located before the demagnifying lens, a second deflector placed such that the deflection field produced by it is totally or partially superimposed on the objective lens field, and a third deflector located in a stage following the second deflector. An image of the light source is created by the demagnifying lens. An image of the light source image is formed on the target by the objective lens.
Abstract:
A method and apparatus satisfying growing demands for improving the precision of angle of incidence of implanting ions that impact a semiconductor wafer and the precision of ribbon ion beams for uniform doping of wafers as they pass under an ion beam. The method and apparatus are directed to the design and combination together of novel magnetic ion-optical transport elements for implantation purposes. The design of the optical elements makes possible: (1) Broad-range adjustment of the width of a ribbon beam at the work piece; (2) Correction of inaccuracies in the intensity distribution across the width of a ribbon beam; (3) Independent steering about both X and Y axes; (4) Angle of incidence correction at the work piece; and (5) Approximate compensation for the beam expansion effects arising from space charge. In a practical situation, combinations of the elements allow ribbon beam expansion between source and work piece to 350 millimeter, with good uniformity and angular accuracy. Also, the method and apparatus may be used for introducing quadrupole fields along a beam line.