Abstract:
An electronics assembly includes one or more electronic components coupled to a fabric. Each electronic component includes one or more electrical connection points, such as a bond pad or solder bump. The electronics assembly also includes one or more electrically conductive wire cloths, one electrically conductive wire cloth coupled to one electrical connection point on an electronic component. The electrically conductive wire cloth is stitched to the fabric by an electrically conductive wire, thereby providing an electrical connection between the electronic component and the electrically conductive wire via the electrically conductive wire cloth.
Abstract:
A semiconductor substrate includes: 1) a first dielectric structure having a first surface and a second surface opposite the first surface; 2) a second dielectric structure having a third surface and a fourth surface opposite the third surface, wherein the fourth surface faces the first surface, the second dielectric structure defining a through hole extending from the third surface to the fourth surface, wherein a cavity is defined by the through hole and the first dielectric structure; 3) a first patterned conductive layer, disposed on the first surface of the first dielectric structure; and 4) a second patterned conductive layer, disposed on the second surface of the first dielectric structure and including at least one conductive trace. The first dielectric structure defines at least one opening to expose a portion of the second patterned conductive layer.
Abstract:
An array imaging module includes a molded photosensitive assembly which includes a supporting member, at least a circuit board, at least two photosensitive units, at least two lead wires, and a mold sealer. The photosensitive units are coupled at the chip coupling area of the circuit board. The lead wires are electrically connected the photosensitive units at the chip coupling area of the circuit board. The mold sealer includes a main mold body and has two optical windows. When the main mold body is formed, the lead wires, the circuit board and the photosensitive units are sealed and molded by the main mold body of the mold sealer, such that after the main mold body is formed, the main mold body and at least a portion of the circuit board are integrally formed together at a position that the photosensitive units are aligned with the optical windows respectively.
Abstract:
An array imaging module includes a molded photosensitive assembly which includes a supporting member, at least a circuit board, at least two photosensitive units, at least two lead wires, and a mold sealer. The photosensitive units are coupled at the chip coupling area of the circuit board. The lead wires are electrically connected the photosensitive units at the chip coupling area of the circuit board. The mold sealer includes a main mold body and has two optical windows. When the main mold body is formed, the lead wires, the circuit board and the photosensitive units are sealed and molded by the main mold body of the mold sealer, such that after the main mold body is formed, the main mold body and at least a portion of the circuit board are integrally formed together at a position that the photosensitive units are aligned with the optical windows respectively.
Abstract:
An ultra low loss dielectric thermosetting resin composition has at least one cyanate ester component (A) and at least one reactive intermediate component (B) that is capable of copolymerization with said component (A). The invention is a cyanate ester resin of the form: Tn-[W-(Z)f/(H)1−f-W]n−1-[W-(Z)f/(H)1−f-(OCN)f/(R)1−f]n+2, wherein T is a 1,3,5-substituted-triazine moiety (C3N3); W is a linking atom between triazine and either component A or component B; Z is component (A); H is component (B); OCN is a cyanate ester end group; R is a reactive end group of component B; n is an integer greater than or equal to 1; and f is a weight or mole fraction of component A. The composition exhibits excellent dielectric properties and yields a high performance laminate for use in high layer count, multilayer printed circuit board (PCB), prepregs, resin coated copper (RCC), film adhesives, high frequency radomes, radio frequency (RF) laminates and various composites.
Abstract translation:超低损耗介电热固性树脂组合物具有至少一种能够与所述组分(A)共聚的氰酸酯组分(A)和至少一种反应性中间组分(B)。 本发明是以下形式的氰酸酯树脂:Tn- [W-(Z)f /(H)1-fW] n-1- [W-(Z)f /(H)1-f-(OCN) f /(R)1-f] n + 2,其中T是1,3,5-取代三嗪部分(C 3 N 3); W是三嗪与组分A或组分B之间的连接原子; Z是组分(A); H是组分(B); OCN是氰酸酯端基; R是组分B的反应性端基; n是大于或等于1的整数; 并且f是组分A的重量或摩尔分数。组合物显示出优异的介电性能并产生用于高层计数,多层印刷电路板(PCB),预浸料,树脂涂层铜(RCC),膜粘合剂 ,高频雷达,射频(RF)层压板和各种复合材料。
Abstract:
The present disclosure relates to a semiconductor substrate, a semiconductor module and a method for manufacturing the same. The semiconductor substrate includes a first dielectric structure, a second dielectric structure, a first patterned conductive layer and a second patterned conductive layer. The first dielectric structure has a first surface and a second surface opposite the first surface. The second dielectric structure has a third surface and a fourth surface opposite the third surface, where the fourth surface is adjacent to the first surface. The second dielectric structure defines a through hole extending from the third surface to the fourth surface. A cavity is defined by the through hole and the first dielectric structure. The first patterned conductive layer is disposed on the first surface of the first dielectric structure. The second patterned conductive layer is disposed on the second surface of the first dielectric structure.
Abstract:
An electronic component, such as a circuit board, fabricated by coextruding an Ultra High Molecular Weight Polyethylene (UHMWPE) filament, such as a Dyneema® filament, and a conductive material, such as an Indalloy wire, using only a three-dimensional printer, such as an FDM machine.
Abstract:
A circuit subassembly, comprising a dielectric layer formed from a dielectric composition comprising, based on the total volume of the composition: about 15 to about 65 volume percent of a dielectric filler; and about 35 to about 85 volume percent of a thermosetting composition comprising: a poly(arylene ether), and a carboxy-functionalized polybutadiene or polyisoprene polymer.
Abstract:
The present disclosure is drawn to an electrostatic ink composition comprising a resin and an elongate conductive species. Also disclosed herein is a substrate on which is electrostatically printed a conductive trace, wherein the trace comprises a resin and an elongate conductive species. Further disclosed herein is a method of electrophotographic printing an electrostatic ink composition comprising a resin and an elongate conductive species.