Abstract:
A memory card with electrostatic discharge (ESD) protection is provided. The memory card includes a board, a set of contacts, at least one chip and an ESD protection path. The board having a signal path not electrically connected to the edge of the board. The ESD protection path for transmitting ESD current is disposed on the board. Furthermore, a part of the ESD protection path extends to the edge of the board.
Abstract:
A thermally enhanced memory module is claimed. The memory module includes a first extended electrical plane, and a thermal connection between a surface plane of its substrate and the first extended electrical plane. A first thermal management, such as a heat spreader, is coupled to the surface plane of the substrate and to the thermal connection.
Abstract:
A circuit board including a first surface, a second surface, and a third surface is provided. The first surface has a first conductive region, and the second surface is opposite to the first surface. The third surface located between the first surface and the second surface and is connected with the first surface and the second surface. The third surface has a second conductive region, and the first conductive region is electrically connected to at least a part of the second conductive region. The circuit board has good electromagnetic compatibility.
Abstract:
A method and system for fabricating an electromagnetic radiation shield for an electronics package is disclosed. The electronics package includes a substrate, at least one ground contact feature, and a protective layer. The electronics package is physically coupled to at least one additional electronics package through at least the substrate. The method and system include exposing a portion of the ground contact feature(s) by removing a portion of the electronics package above the ground contact feature(s). The exposing step forms at least one trench above the ground contact feature(s). The method and system also include depositing an electromagnetic radiation shield that substantially covers the electronics package, fills the trench(es), and is electrically connected to the ground contact feature(s). The method and system also include separating the electronics package from the additional electronics package(s) such that a remaining portion of the electromagnetic radiation shield that substantially encloses a portion of the electronics package above the ground contact feature(s) remains.
Abstract:
The disclosed board fabrication techniques and design features enable the construction of a reliable, high-layer-count, and economical backplane for routers and the like that require a large number of signaling paths across the backplane at speeds of 2.5 Gbps or greater, as well as distribution of significant amounts of power to router components. The disclosed techniques and features allow relatively thick (e.g., three- or four-ounce copper) power distribution planes to be combined with large numbers of high-speed signaling layers in a common backplane. Using traditional techniques, such a construction would not be possible because of the number of layers required and the thickness of the power distribution layers. The disclosed embodiments use novel layer arrangements, material selection, processing techniques, and panel features to produce the desired high-speed layers and low-noise high-power distribution layers in a single mechanically stable board.
Abstract:
An electronic device utilizing an electrostatic discharge (ESD) protection structure. The electronic device comprises a housing and a printed circuit board (PCB) with an ESD protection structure disposed thereon. The PCB has at least one metal layer with a ground circuit and a functional circuit. The ground circuit includes at least one device-protecting area near the edge of the PCB and exposed on the surface thereof. The device-protecting area is covered by a thick conductive layer, and electric components are disposed nearby, such that static electricity can be transferred to ground through the ground circuit of the PCB to protect the electronic device from interferences and damages.
Abstract:
A multilayer printed circuit board is provided in which microcracks or metallic migration is mitigated when a Resin Fill Plated Through Hole (RFP) is arranged near the edge thereof. The multilayer printed circuit board includes an inner layer having an RFP, outer layers, RFP lands, and conductor layers. The conductor layers are positioned over the RFP lands and the outer edges of the conductor layers extends outward further than the outer edges of the RFP lands. When the multilayer printed circuit board is heated, a stress is generated in and near the RFP. The conductor layers positioned so as to cover the RFP lands, exert a reaction against the stress to suppress generation of microcracks in the multilayer printed circuit board and thereby mitigate metallic migration in the board.
Abstract:
An electronic device utilizing an electrostatic discharge (ESD) protection structure. The electronic device comprises a housing and a printed circuit board (PCB) with an ESD protection structure disposed thereon. The PCB has at least one metal layer with a ground circuit and a functional circuit. The ground circuit includes at least one device-protecting area near the edge of the PCB and exposed on the surface thereof. The device-protecting area is covered by a thick conductive layer, and electric components are disposed nearby, such that static electricity can be transferred to ground through the ground circuit of the PCB to protect the electronic device from interferences and damages.
Abstract:
A laminate comprising an insulation layer sandwiched between a pair of electrically conductive layers is prepared for electrical insulation testing by using a laser to remove a strip from at least one of the conductive layers proximate the edge of the laminate to electrically isolate a central, bulk portion of the conductive layer from the edges of the laminate. Conductive material that may be smeared across an edge of the laminate will not therefore provide an electrical short between the portion of the conductive layer surrounded by the slot and the second conductive layer on the opposite side of the insulation layer.
Abstract:
A chassis and associated telecommunication circuit card are disclosed. The chassis has heat dissipation and flame containment features while accommodating a high density of the circuitry cards. Embodiments include an inner housing with a double-layer middle floor dividing the chassis into top and bottom chambers. Each layer has partially aligned slots, and an air gap is provided between the two layers. Embodiments also include a double-layer mesh cover with an air gap existing between the two mesh layers. Projections and grooves are provided on the inner surfaces of the inner housing to receive circuit cards having a guide on one edge and a fin on another. The circuit card includes conductor structures such as multiple board layers with paired and segregated conductors. The circuit card also includes some components positioned to cooperate with the ventilation features of the chassis and includes some components chosen for low-power consumption or reduced flammability.