Abstract:
Disclosed is an organic EL illumination device—which is provided with: an organic EL element (13) on a glass substrate (10); and a plurality of anode terminal electrodes (11) and cathode terminal electrodes (12) for evenly supplying current to the aforementioned organic EL element (13) on the aforementioned glass substrate (10)—wherein the organic EL illumination device is provided with a wiring board (1) to which a circuit having anode wiring (1a) corresponding to the position of each of the aforementioned anode terminal electrodes (11), and a circuit having cathode wiring (1b) corresponding to the position of each of the aforementioned cathode terminal electrodes (12) are formed.
Abstract:
Provided is a device packaging structure including: an interposer substrate including a substrate, and a plurality of through-hole interconnections formed inside a plurality of through-holes passing through the substrate from a first main surface toward a second main surface, the first main surface being one main surface of the substrate, the second main surface being the other main surface thereof; a first device which includes a plurality of electrodes and is arranged so that these electrodes face the first main surface; and a second device which includes a plurality of electrodes of which an arrangement is different from an arrangement of each of the electrodes of the first device, and is arranged so that these electrodes face the second main surface.
Abstract:
A packaging substrate includes a circuit board, a number of first conductive posts, and a number of second conductive posts. The circuit board includes a first base and a first conductive pattern layer formed on a first surface of the first base. The first conductive posts extend from and are electrically connected to the first conductive pattern layer. The second conductive posts extend from and are electrically connected to the first conductive pattern layer. The height of each of the second conductive posts are larger than that of each of the first conductive posts.
Abstract:
A printed circuit board (PCB) includes first and second signal layers. First and second pairs of signal transmission lines are respectively laid out on the first and second signal layers. The first pair of signal transmission lines includes first positive and negative differential signal transmission lines. The second pair of signal transmission lines includes second positive and negative differential signal transmission lines. The first positive differential signal transmission line is electrically connected to the second negative differential signal transmission line by a first vertical interconnect access (via). The first negative differential signal transmission line is electrically connected to the second positive differential signal transmission line by a second via. An angle between a centerline of each of the first via and second via and a surface of the PCB is an acute angle.
Abstract:
An interposer is made of nested drawn copper shells with insulation between them. The shells are etched using methods of ordinary printed wiring fabrication, but being three dimensional, straight runs from the die to the motherboard can be made optimally short and wide without passing through any vias. Some shells can extend upward for top connections, and vias and crossing landlines can be used as required in the areas away from the die.
Abstract:
A wiring substrate for mounting a light emitting element, comprising: a substrate body comprising an insulating material and having a first surface and a back surface; and a cavity being opened into the first surface of said substrate body and having a mounting area for mounting a light emitting element at a bottom face of said cavity, wherein a metalized layer provided along a side face of said cavity and metalized layers provided in said substrate body are provided to continue to each other.
Abstract:
The invention relates to circuit boards and to screening circuits and components on such boards from stray rf interference when they are mounted as arrays or stacks of such circuit boards. The circuit boards (12, 14) are individually screened by conductive screening layers (16, 18) as known in the art and the individual screening layers are coupled together by layered interconnects (34) which connect corresponding screening layers (16, 18) of the individual circuit boards (12, 14) together, instead of by vias.
Abstract:
Circuit boards, microelectronic devices, and other apparatuses having slanted vias are disclosed herein. In one embodiment, an apparatus for interconnecting electronic components includes a dielectric portion having a first surface and a second surface. A first terminal is disposed on the first surface of the dielectric portion for connection to a first electronic component. A second terminal is disposed on the second surface of the dielectric portion for connection to a second electronic component. The apparatus further includes a passage extending through the dielectric portion along a longitudinal axis oriented at an oblique angle relative to the first surface. The passage is at least partially filled with conductive material electrically connecting the first terminal to the second terminal.
Abstract:
An electronics assembly is provided including a circuit board substrate having a top surface and a bottom surface and a plurality of thermal conductive vias extending from the top surface to the bottom surface. At least one electronics package is mounted to the top surface of the substrate. A heat sink device is in thermal communication with the bottom surface of the substrate. Thermal conductive vias are in thermal communication to pass thermal energy from the at least one electronics package to the heat sink. At least some of the thermal conductive vias are formed extending from the top surface to the bottom surface of the substrate at an angle.
Abstract:
Circuit boards, microelectronic devices, and other apparatuses having slanted vias are disclosed herein. In one embodiment, an apparatus for interconnecting electronic components includes a dielectric portion having a first surface and a second surface. A first terminal is disposed on the first surface of the dielectric portion for connection to a first electronic component. A second terminal is disposed on the second surface of the dielectric portion for connection to a second electronic component. The apparatus further includes a passage extending through the dielectric portion along a longitudinal axis oriented at an oblique angle relative to the first surface. The passage is at least partially filled with conductive material electrically connecting the first terminal to the second terminal.