Abstract:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150° C., and can be completed in less than 60 minutes.
Abstract:
An electrical switch for an electric device is provided, including a contact system including at least one electrical power supply line, an electronic control circuit and an electrical connection element arranged between at least one contact face of the control circuit and the power supply line. The electrical connection element has at least one metal pin that is fixed in an electrically non-conductive fixing element such that the pin is aligned with respect to the contact face and the power supply line, and such that the pin protrudes from the fixing element on both sides thereof to contact the contact face and the power supply line.
Abstract:
A power interconnection system comprising a plurality of z-axis compliant connectors passing power and ground signals between a first circuit board to a second circuit board is disclosed. The interconnection system provides for an extremely low impedance through a broad range of frequencies and allows for large amounts of current to pass from one substrate to the next either statically or dynamically. The interconnection system may be located close to the die or may be further away depending upon the system requirements. The interconnection may also be used to take up mechanical tolerances between the two substrates while providing a low impedance. interconnect.
Abstract:
Solder joints coupling pins to a microelectronic package substrate are enshrouded with an encapsulation material. In this manner, pin movement is limited even if the pin solder subsequently melts.
Abstract:
A method for implementing a circuit component on a surface of a multilayer circuit board is provided. The circuit component includes a plurality of pins and the circuit board includes a plurality of electrically conductive vias penetrating at least one layer of the circuit board and being arranged so as to form at least one channel for routing one or more traces at one or more signal layers of the circuit board. The method comprises the step of forming at least one pin of the plurality of pins of the circuit component to have a length compatible with a depth of a corresponding via of the circuit board.
Abstract:
A multilayer wiring board includes a substrate, a first planar conductor layer, a second planar conductor layer, resin dielectric layers, filled vias, and stacked via structures. Each of the stacked via structures is disposed in the resin dielectric layers and is configured such that the filled vias are stacked substantially coaxially and are mutually connected together. A first end of the stacked via structure is connected directly to either the first planar conductor layer or the second planar conductor layer. A second end of the stacked via structure is unconnected, directly, to both the first planar conductor layer and the second planar conductor layer.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
A semiconductor package provided with an interconnection layer including an interconnection pattern and pad formed on an insulating substrate or insulating layer, a protective layer covering the interconnection layer except at the portion of the pad and the insulating substrate or insulating layer, and an external connection terminal bonded with the pad exposed from the protective layer, the pad to which the external connection terminal is bonded being comprised of a plurality of pad segments, sufficient space being opened for passing an interconnection between pad segments, and the pad segments being comprised of at least one pad segment connected to an interconnection and other pad segments not connected to interconnections.
Abstract:
An electronic package and information handling system utilizing same wherein the package substrate includes an internally conductive layer coupled to an external pad and of a size sufficiently large enough to substantially prevent cracking, separation, etc. of the pad when the pad is subjected to a tensile pressure of about 1.4 grams per square mil or greater.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.