Abstract:
A semiconductor device includes a package having opposing surfaces, a first terminal for an outer connection supported by said package and electronic components supported by said package, and the opposing surfaces of the package having slits so that a shape of the package can be changed in a mounted state. Therefore, stress applied to soldered junctions of the first and second terminals is decreased.
Abstract:
A chip carrier according to the present invention includes: a carrier body including an upper face, a lower face, and an internal conductor; and a plurality of terminal electrodes formed on the upper face of the carrier body, the plurality of terminal electrodes electrically connecting an LSI chip to the internal conductor. A plurality of concave portions for electrically connecting a plurality of electrodes on a circuit substrate to the internal conductor are provided on the lower face of the carrier body, the concave portions being electrically connected to the internal conductor.
Abstract:
A solder bump is stenciled into a substrate, providing bumped substrate at pitches below 400 microns. The solder is applied through stencil/mask and paste method; the mask, however, remains attached to the substrate during reflow. Pitches of greater than 400 microns may also be obtained through the invention. The invention further provides for generation of uniform, controllable volume metal balls
Abstract:
A substrate (100) includes a surface (102) having a hook and loop fastener area (106). The area (106) is selectively metallized to produce interconnect points (108). The area (106) is used to attach a connector, another substrate, or a flex circuit to the substrate (100) without the use of solder or other conductive adhesives. The area (106) provides for the mechanical coupling. The selectively metallized areas (108) provide for the electrical coupling of the two substrates.
Abstract:
A semiconductor device includes vertical placement part for mounting the semiconductor device on a surface of a circuit board in a vertical position, and a connection part for making electrical connections between the circuit board and a semiconductor element. A stage is provided on which the semiconductor element is placed. The stage has supporting members causing the semiconductor device to vertically stand on the circuit board. Wiring boards, stacked on a side of the stage on which the semiconductor element is placed, have windows in which the semiconductor element is located. The vertical placement part includes wiring lines extending between edges of the wiring boards facing the circuit board and peripheries of the windows. The wiring lines have ends located in the vicinity of the edges of the wiring boards and have a shape enabling the semiconductor device to be mounted on the circuit board.
Abstract:
A semiconductor device includes at least one semiconductor element contained in a casing, with main terminals and auxiliary terminals drawn from the semiconductor electrodes disposed on the upper face of the casing. The main terminals and the auxiliary terminals are arranged on the same plane at the same height without disposing partitions between the terminals so that the devices can be mounted on a printed wiring board on which the necessary conductor patterns for the main circuit have already been formed. In an alternative embodiment, the main terminals are arranged at a level slightly higher than the auxiliary terminals with the auxiliary terminals being surrounded by a supporting guide.
Abstract:
A semiconductor package having a gull-wing, zig-zag, inline-lead configuration and end-of-package anchoring devices for rigidly affixing the package to a circuit board such that each lead is in compressibe contact with its associated mounting pad on the board. The anchoring devices of a first embodiment comprise anchoring pins having fish-hook-type barbs which lock against the under side of the board when the pegs are inserted through holes in the board; a second embodiment utilizes anchoring pins which are adhesively bonded in recesses that have been drilled or molded into the board; a third embodiment utilizes anchoring pins, the ends of which can be bonded directly to planar peg-bonding regions on the surface of the board; and a fourth utilizes tapered anchoring ping which may be inserted with an interference fit into holes in the board. The invention eliminates the need for mechanical support of the packages during solder reflow operations used during board assembly and repair.
Abstract:
An electric lamp having a cap (10) of synthetic resin is suitable for use on a printed circuit board (6). The cap (10) has resilient arms (15) extending parallel to a plane (8) through the axis (2) of the lamp vessel (1). The holder portion (11) of the cap (10) holding the lamp vessel (1), and the arms (15) can clamp a p.c.b. (6) in between them. Means (19, 21) may be present to keep the lamp fixed in an opening (9) in the p.c.b. (6) or at an edge thereof. The lamp requires little space on a p.c.b.
Abstract:
A mounting peg system is disclosed in an electrical connector adapted for surface mounting on a printed circuit board. The connector includes an elongated insulating housing defining a longitudinal direction and a transverse direction of the connector. At least a pair of mounting pegs are spaced longitudinally of the housing for mounting in a respective pair of mounting holes in the printed circuit board. The mounting peg system includes one of the pair of mounting pegs being configured to be relatively rigid in both the longitudinal and transverse directions of the connector to securely retain the connector on the circuit board. The other of the pair of mounting pegs is configured to be relatively rigid in the transverse direction and relatively compliant in the longitudinal direction to accommodate longitudinal thermal expansion of the housing relative to the circuit board.
Abstract:
A method for attaching an integrated circuit component to a printed circuit board by a plurality of solder bump interconnections utilizes a printed circuit board comprising a solder-plated circuit trace. The trace includes terminals, each including a terminal pad and a runner section. A solder plate formed of a first solder alloy is applied to the terminal to extend continuously between the pad and the runner section. Solder bumps are affixed to the component and are formed of second compositionally distinct solder alloy having a melting temperature greater than the first alloy. The component and board are then assembled so that the bumps rest against the solder-plated terminal pads, and heated to a temperature effective to melt the solder plate but not the bump alloy. Upon cooling to resolidify the solder, the solder plate is fused to the bumps to form the interconnections.