Abstract:
An apparatus and a method of dispensing process liquid from a liquid source onto a surface of a semiconductor wafer is disclosed in accordance with the present invention. The apparatus includes a nozzle having a bore with a longitudinal axis in fluid communication with the liquid source and a flow surface having a perimeter. The flow surface is oriented at a first angle relative to the axis and in fluid communication with the bore to dispense a sheet of process liquid from the perimeter onto a wafer surface. In a preferred embodiment, the nozzle is axisymmetric and includes a housing having a source portion connected to the liquid source and a dispense portion, and the bore traverses the source and dispense portions. An insert is provided having a first section disposed in the dispense portion of the bore adjacent to the source portion and a second section including the flow surface which is fully circumferential and continuous. The flow surface is in close proximity to the dispense portion, so as to define a flow path along the flow surface to control the flow of the process liquid. In the method of the invention, the nozzle is positioned to dispense a sheet of process liquid onto the wafer surface, while the surface is being rotated. The nozzle is radially offset from the center of the surface such that a portion of the continuous sheet of process liquid is dispensed directly onto the center of the wafer surface.
Abstract:
To protect the optical surface of optical disc information recording media such as a compact disc (CD) or a digital versatile disc (DVD), that surface is coated with a removable layer of a material that does not significantly alter the optical properties of the disc. Whenever the coating layer may have become damaged, it is removed and replaced with a new layer.
Abstract:
A method of coating an interior surface of a metal tube with a coating material including the steps of filling the tube with a fluid degradable transport material containing a dispersion of the coating material, rotating the tube, and induction heating the tube to a fusion point of the coating material.
Abstract:
A develop processing apparatus is provided for processing an object with a developing solution, comprising a retaining member for rotatably retaining the object, a developing solution supply nozzle for supplying the developing solution to the object, a developing solution sucking nozzle for sucking the developing solution supplied to the object, a developing solution supply nozzle moving mechanism for moving the developing solution supply nozzle above the object, a developing solution sucking nozzle moving mechanism for moving the developing solution sucking nozzle above the object. After the developing solution is supplied to the object subsequent to moving the developing solution supply nozzle, the developing solution sucking nozzle is moved and the developing solution on the object is sucked.
Abstract:
A detachable sponge device for a spin coating machine used to coat a liquid material over a semiconductor wafer is provided. The detachable sponge device is used to prevent the solvent that is jetted on the edge of the wafer from being oversprayed elsewhere on the wafer. The detachable sponge device is composed of a curved mounting piece and a corrugated piece of sponge attached on the curved inner side of the mounting piece. The mounting piece can be detachably mounted on the spin coating machine. The corrugated piece of sponge can absorb splattered particles of solvent from the wafer which can thus be prevented from bouncing back onto the wafer. The planarization of the coating of SOG on the wafer thus will not be affected by splattering particles of the solvent. Excellent results of planarization of SOG or photoresist layers can thus be achieved.
Abstract:
The present invention discloses an apparatus and a method for breaking up air bubbles in a liquid flow which is conveyed in a fluid conduit by providing sharp protuberances on the inside wall of the conduit. The sharp protuberances break up large air bubbles into small air bubbles or micro-bubbles such that they can be easier disposed of after passing through a liquid dispensing nozzle. Various designs on the inner wall of the present invention fluid conduit can be provided as long as sharp protuberances exist for dividing the bubbles.
Abstract:
An apparatus for coating a lens and curing the coating on the lens including a lens carrier for griping and holding the lens, a housing having a first set of walls defining a coating chamber with an opening in one of the first walls, the housing also having a second set of walls defining a curing chamber with an opening in one of the second walls. An arrangement for applying a coating to the lens within the coating chamber, an arrangement for projecting ultraviolet radiation within the curing chamber for curing the coating on the lens, and an arrangement for selectively blocking the ultraviolet radiation from passing into the coating chamber are provided. A carriage supports the lens carrier and the lens held thereby and moves the lens carrier and the lens along a predetermined path of motion within the housing, the path of motion moving the lens carrier and the lens through the coating chamber opening into the coating chamber so that the lens is in an inverted disposition during coating of the lens by the arrangement for coating, and moving the lens carrier and the lens through the curing chamber opening into the curing chamber so that the lens is in a vertically oriented disposition during curing of the coating on the lens by the ultraviolet radiation.
Abstract:
A development processing apparatus includes a processing unit for storing a substrate S and a processing solution supply nozzle arranged above the substrate S stored in the processing unit. A processing solution storage is formed inside the supply nozzle. A supply passage for supplying the processing solution into the solution storage is connected to the supply nozzle. A plurality of eject holes for ejecting the processing solution in the solution storage are formed in a lower surface of the supply nozzle. In this processing apparatus, the upper surface of the solution storage consists of at least one inclined surface, and an exhaust port is formed in a high portion of the inclined surface.
Abstract:
A baffle is placed in a position opposed to discharge openings of a treating solution supply nozzle and between the discharge openings and the surface of a substrate. The baffle intercepts a treating solution discharged from the discharge openings, whereby the treating solution is supplied evenly to the surface of the substrate by flowing over a surface of the baffle and falling from an edge of the baffle to the substrate, instead of falling from the discharge openings directly to the substrate. No microbubbles are formed in the treating solution on the substrate, which would cause an unevenness of treatment. The discharge openings may be defined by a plurality of circular bores formed in the supply nozzle. Each circular bore may have a diameter at least equal to a spacing between an adjacent pair of circular bores.
Abstract:
A method of coating an interior surface of a metal tube with a coating material including the steps of filling the tube with a fluid degradable transport material containing a dispersion of the coating material, rotating the tube, and induction heating the tube to a fusion point of the coating material.