Abstract:
The present disclosure relates to a method and related system for spectrum optimization of an illumination light source. Spectrum optimization according to the present disclosure can be based on various optimization parameters, including but not limited to luminous efficacy, color rendering effect, luminous efficacy of radiation, mesopic efficacy of radiation, cirtopic efficacy of radiation, etc. The present method and system are capable of optimizing illumination performance of a light source in various aspects in an individual or integrated manner. Further, the present method and system are capable of accommodating different illumination purposes and conditions by combining and prioritizing different optimization parameters.
Abstract:
The invention relates to a method and apparatus for measuring inflorescence, seed and/or seed yield phenotype of a plant. More particularly, the invention relates to a method and apparatus for high throughput analysis of inflorescence, seed and/or seed yield phenotype of a panicle-like bearing plant.
Abstract:
A spectroscopic device and the like that are capable of fast spectral dispersion are provided. The spectroscopic device includes: a modulation unit for converting wavefront shapes of light according to wavelengths; and a demodulation unit for changing a phase of light of a selected wavelength within the light whose wavefront shapes have been converted, in such a way that the light changes into a predetermined state.
Abstract:
A system and device that measures a specimen's surface profile by passing a bright white light source through a series of lenses which generate repeatable chromatic focal shift variations of wavelengths of white light for Z axis measurements. The movement of the sensor along an X-Y raster pattern is controlled by a X-directional and Y-directional scanner used in combination with X and Y actuators. The system and device translate the chromatic focal shifts into digital data which may then be used to both control the position of the lenses along the surface of the specimen and generate a 3D topographical images of the specimens being profiled.
Abstract:
Described herein is the use of a visible near infrared (VNIR) hyperspectral imaging system as a non-invasive diagnostic tool for early detection of Parkinson's disease (PD). Also described herein is the use of a VNIR hyperspectral imaging system in high throughput screening of potential therapeutics against PD.
Abstract:
There is described an apparatus (2) for measuring an amount of an analyte in a mixture. In one example, the apparatus (2) has a laser source (6) for generating a frequency-modulated laser beam (22). A cavity (36) receives the frequency-modulated laser beam (22) and a photodetector (46) obtains an intensity signal indicative of an interaction between the frequency-modulated laser beam (22) and the mixture. The apparatus (2) has a first demodulator (76) for producing a first demodulation signal. A frequency locking arrangement uses the first demodulation signal to lock a carrier frequency of the frequency-modulated laser beam (22) and a mode of the cavity (36) to each other. The apparatus has a second demodulator (50) for producing a second demodulation signal and for generating, on the basis of the second demodulation signal, an output indicative of the amount of the analyte in the mixture. Other apparatus and methods are described.
Abstract:
Described herein is the use of a visible near infrared (VNIR) hyperspectral imaging system as a non-invasive diagnostic tool for early detection of Alzheimer's disease (AD). Also described herein is the use of a VNIR hyperspectral imaging system in high throughput screening of potential therapeutics against AD.
Abstract:
A method for evaluation of target media parameters using visible through near infrared light is disclosed. The apparatus comprises a light source, illuminator/collector, optional illumination wavelength selector, optional light gating processor, imager, detected wavelength selector, controller, analyzer and display unit. The apparatus illuminates an in situ target. The sample absorbs some light while a large fraction of the light is diffusely scattered within the sample and some light exits the sample and may be detected in an imaging fashion using wavelength selection and an optical imaging system. The method extends the dynamic range of the optical imager by extracting additional information from the detected light that is used to provide reconstructed contrast of smaller concentrations of chromophore. Using a reiterative calibration method, acquired spectra and images are analyzed and displayed in near real time in such a manner as to characterize functional and structural information of the target tissue.
Abstract:
A system for processing a multiband image, including digital computer memory for storing a multiband image having multiple bands of image data; and processing circuitry for processing the multiband image, wherein the processing circuitry (a) determines pixel locations in the bands of the multiband image having values above the band-specific white value threshold for each of the bands of the multiband image, (b) determines a band-specific correction factor for each of plural bands of the multiband image based on the determined pixel locations, and (c) applies the corresponding band-specific correction factor to the respective plural bands of the multiband image to produce a corrected image.
Abstract:
An optical system includes a lens, a pupil relay, and an aperture stop positioned at a focal point of the lens between the lens and the pupil relay. The lens is configured to collect a plurality of light bundles. Each light bundle emanates from a field point of an object plane and has a center ray substantially parallel to an optical axis of the lens. The lens is configured to direct the center ray of each light bundle through the aperture stop and onto the pupil relay. The pupil relay is configured to image a plane of the aperture stop onto a sensor array.