Method for correcting drift of accelerating voltage, method for correcting drift of charged particle beam, and charged particle beam writing apparatus
    63.
    发明授权
    Method for correcting drift of accelerating voltage, method for correcting drift of charged particle beam, and charged particle beam writing apparatus 有权
    用于校正加速电压漂移的方法,用于校正带电粒子束漂移的方法和带电粒子束写入装置

    公开(公告)号:US09508528B2

    公开(公告)日:2016-11-29

    申请号:US14838848

    申请日:2015-08-28

    Abstract: A method for correcting a drift of an accelerating voltage includes measuring, after a position of a focus of a charged particle beam has been adjusted based on a first adjustment value and a predetermined time period has passed, a second adjustment value when the position of the focus of the charged particle beam is newly adjusted, calculating a deviation amount between the first adjustment value and the second adjustment value, calculating, using a correlation stored in a storage device, a correction value of an accelerating voltage to be applied to a beam source which emits the charged particle beam, where the correction value corresponds to the deviation amount, and correcting the accelerating voltage to be applied to the beam source, by using the correlation value.

    Abstract translation: 一种用于校正加速电压的漂移的方法包括:在基于第一调整值和预定时间段已经调整带电粒子束的焦点的位置之后,测量第二调整值,当位置 重新调整带电粒子束的焦点,计算第一调整值和第二调整值之间的偏差量,使用存储在存储装置中的相关性来计算要施加到光束源的加速电压的校正值 其发射带电粒子束,其中校正值对应于偏差量,并且通过使用相关值来校正要施加到束源的加速电压。

    Method for measuring a distance of a component from an object and for setting a position of a component in a particle beam device
    64.
    发明授权
    Method for measuring a distance of a component from an object and for setting a position of a component in a particle beam device 有权
    用于测量部件与物体的距离和用于设定粒子束装置中的部件的位置的方法

    公开(公告)号:US09496116B2

    公开(公告)日:2016-11-15

    申请号:US14874969

    申请日:2015-10-05

    Abstract: The system described herein determines a distance of a component of a particle beam device from an object to the particle beam device and sets a position of the component in the particle beam device. The component is moved from a first starting position of the component relatively in the direction of an object, which is located in a second starting position, until the component makes contact with the object. When the component makes contact with the object, an adjusting path covered by the component and/or the object during the movement is determined. The adjusting path runs along a straight line that joins a first point on the component in the first starting position to a second point on the object in the second starting position that is arranged closest to the first point on the component along this line. The adjusting path corresponds to the distance.

    Abstract translation: 本文描述的系统确定粒子束装置的部件从物体到粒子束装置的距离,并且设置粒子束装置中部件的位置。 组件相对于位于第二起始位置的物体的方向相对地从组件的第一起始位置移动,直到部件与物体接触。 当组件与对象接触时,确定在移动期间被组件和/或对象覆盖的调整路径。 调整路径沿着将第一起始位置中的部件上的第一点连接到物体上的第二起始位置的直线延伸,该第二起始位置最靠近沿该线路的部件上的第一点布置。 调整路径对应于距离。

    Charged-particle-beam device and method for correcting aberration
    65.
    发明授权
    Charged-particle-beam device and method for correcting aberration 有权
    带电粒子束装置和校正像差的方法

    公开(公告)号:US09484182B2

    公开(公告)日:2016-11-01

    申请号:US14422423

    申请日:2013-08-07

    Abstract: The present invention provides a method and apparatus for correcting an aberration in a charged-particle-beam device. The apparatus includes a charged-particle-beam source, a charged-particle optical system that irradiates a specimen with charged particles emitted from the charged-particle-beam source, an aberration corrector that corrects an aberration of the charged-particle optical system, a control unit that controls the charged-particle optical system and the aberration corrector, a through-focus imaging unit that obtains plural Ronchigrams in which a focal position of the charged-particle optical system is changed, and an aberration calculation unit that divides the obtained Ronchigram into plural local areas, and calculates the amount of the aberration based on line focuses detected in the local areas.

    Abstract translation: 本发明提供了一种用于校正带电粒子束装置中的像差的方法和装置。 该装置包括带电粒子束源,从带电粒子束源发射的带电粒子照射样本的带电粒子光学系统,校正带电粒子光学系统的像差的像差校正器, 控制所述带电粒子光学系统的控制单元和所述像差校正器,获得所述带电粒子光学系统的焦点位置被改变的多个Ronchigram的通过焦点摄像单元,以及将获得的Ronchigram 进入多个局部区域,并且基于在局部区域中检测到的线焦点来计算像差量。

    Charged particle microscope device and image capturing method
    66.
    发明授权
    Charged particle microscope device and image capturing method 有权
    带电粒子显微镜装置及摄像方法

    公开(公告)号:US09460889B2

    公开(公告)日:2016-10-04

    申请号:US14110758

    申请日:2012-04-11

    Abstract: A specimen image capture method using a charged particle microscope device includes: a first image acquisition step in which the gain of a detector in a charged particle microscope is set to a first gain value, charged particle beam scanning is carried out on a specimen, and a first image is obtained; a second image acquisition step in which the gain of the detector is set to a second gain value, which is different to the first gain value, charged particle beam scanning is carried out on the specimen, and a second image is obtained; and an image combination step in which the first gain value and the second gain value are used and the first image and the second image are combined.

    Abstract translation: 使用带电粒子显微镜装置的标本图像捕获方法包括:第一图像获取步骤,其中将带电粒子显微镜中的检测器的增益设置为第一增益值,对样本进行带电粒子束扫描, 获得第一个图像; 第二图像获取步骤,其中检测器的增益被设置为与第一增益值不同的第二增益值,对样本进行带电粒子束扫描,并获得第二图像; 以及其中使用第一增益值和第二增益值并且组合第一图像和第二图像的图像组合步骤。

    Transmission electron microscope micro-grid
    67.
    发明授权
    Transmission electron microscope micro-grid 有权
    透射电子显微镜微格

    公开(公告)号:US09406481B2

    公开(公告)日:2016-08-02

    申请号:US14738952

    申请日:2015-06-15

    Abstract: A transmission electron microscope micro-grid includes a carbon nanotube layer sandwiched between a first metal layer and a second metal layer. The carbon nanotube layer includes a first surface and a second surface opposite to each other, and the carbon nanotube layer comprises a number of carbon nanotubes. The first metal layer is attached on the first surface. The second metal layer is attached on the second surface. The first metal layer and the second metal layer are bonded with the carbon nanotube layer via a number of dangling bonds on the number of carbon nanotubes, the first metal layer defines a number of first through holes, the second metal layer defines a number of second through holes, and the carbon nanotube layer is exposed through the number of first through holes and the number of second through holes.

    Abstract translation: 透射电子显微镜微格栅包括夹在第一金属层和第二金属层之间的碳纳米管层。 碳纳米管层包括彼此相对的第一表面和第二表面,并且碳纳米管层包含多个碳纳米管。 第一金属层附着在第一表面上。 第二金属层附着在第二表面上。 第一金属层和第二金属层通过多个碳纳米管的悬挂键与碳纳米管层接合,第一金属层限定多个第一通孔,第二金属层限定多个第二金属层 通孔,并且碳纳米管层通过多个第一通孔和第二通孔的数量而暴露。

    Apparatus for charged particle lithography system
    68.
    发明授权
    Apparatus for charged particle lithography system 有权
    带电粒子光刻系统的装置

    公开(公告)号:US09390891B2

    公开(公告)日:2016-07-12

    申请号:US14483740

    申请日:2014-09-11

    Abstract: An apparatus for use in a charged particle multi-beam lithography system is disclosed. The apparatus includes a plurality of charged particle doublets each having a first aperture and each configured to demagnify a beamlet incident upon the first aperture thereby producing a demagnified beamlet. The apparatus further includes a plurality of charged particle lenses each associated with one of the charged particle doublets, each having a second aperture, and each configured to receive the demagnified beamlet from the associated charged particle doublet and to realize one of two states: a switched-on state, wherein the demagnified beamlet is allowed to travel along a desired path, and a switched-off state, wherein the demagnified beamlet is prevented from traveling along the desired path. In embodiments, the first aperture is greater than the second aperture, thereby improving particle beam efficiency in the charged particle multi-beam lithography system.

    Abstract translation: 公开了一种用于带电粒子多光束光刻系统的装置。 该装置包括多个带电荷的微粒双峰,每个具有第一孔,并且每个被配置成使入射在第一孔上的子束缩小,从而产生缩小的子束。 该装置还包括多个带电粒子透镜,每个与带电粒子双重体中的一个相关联,每个具有第二孔径,并且每个被配置成从相关联的带电粒子双重体接收已缩小的子束并实现两种状态之一: 在状态下,其中允许缩小的子束沿着期望的路径行进,并且关闭状态,其中防止了缩小的子束沿所需的路径行进。 在实施例中,第一孔径大于第二孔径,从而提高带电粒子多光束光刻系统中的粒子束效率。

Patent Agency Ranking