Abstract:
A catalyst composition is useful for producing a ketone from a compound containing at least one epoxide group, and the catalyst composition contains at least one precious metal; and at least one mixed oxide; wherein the mixed oxide contains zirconium dioxide and silicon dioxide; wherein the precious metal is supported and the support is not entirely made of the mixed oxide; and wherein a mass ratio of zirconium dioxide to silicon dioxide in the mixed oxide is 86:14 to 99.9:0.1.
Abstract:
A hydrotreating catalyst for hydrocarbon oil having a hydrodesulfurization activity additionally improved by: simultaneously and continuously adding an aqueous solution of an acidic compound containing titanium and an aqueous solution containing an alkaline compound to a hydrosol containing an alumina hydrate particle at a temperature of 10 to 100° C. and a pH of 4.5 to 6.5; washing the resultant to remove a contaminating ion; forming the washed product after dehydration so as to have a moisture content at which it is formable; drying the resultant; impregnating the dried product with a catalytic component aqueous solution containing periodic table group 6 metal compound, periodic table group 8-10 metal compound, phosphorus compound, and saccharide; and drying the resultant; a manufacturing method for the catalyst; and a hydrodesulfurization treatment method for hydrocarbon oil using the catalyst.
Abstract:
To provide a heterogeneous catalyst that exhibits high activity and high selectivity, specifically a catalyst suitable for oxychlorination to produce 1,2-dichloroethane from ethylene, and a catalyst system. Provided are: a heterogeneous catalyst supported on a porous carrier, characterized in that the integral value of the hysteresis occurring between an adsorption isotherm and a desorption isotherm by a gas adsorption method, is at most 19% to the total integral value of the adsorption isotherm; and a catalyst system for producing 1,2-dichloroethane, which comprises this catalyst and a diluent having a spherical shape, circular cylindrical shape or hollow cylindrical shape.
Abstract:
A process for preparing a crystalline mesoporous metal oxide, i.e., crystalline mesoporous transition metal oxide, crystalline mesoporous Lanthanide metal oxide, a crystalline mesoporous post-transition metal oxide and crystalline mesoporous metalloid oxide. The process comprises providing an acidic mixture comprising an amorphous mesoporous metal oxide; and heating the acidic mixture at a temperature and for a period of time sufficient to form the crystalline mesoporous metal oxide. A crystalline mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in crystalline mesoporous metal oxides. The method comprises providing an acidic mixture comprising an amorphous mesoporous metal oxide; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Crystalline mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
Abstract:
The present invention is directed to an improved finished hydroisomerization catalyst manufactured from a first high nanopore volume (HNPV) alumina having a broad pore size distribution (BPSD), and a second HNPV alumina having narrow pore size distribution (NPSD). Their combination yields a HNPV base extrudate having a low particle density as compared to a conventional base extrudates.
Abstract:
Process for preparing a hydrocracking catalyst carrier which process comprises subjecting a carrier comprising an amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10 to calcination at a temperature of from 700 to 900° C., hydrocracking catalyst carrier comprising amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, the infrared spectrum of which catalyst has a peak at 3690 cm−1, substantially reduced peaks at 3630 cm−1 and 3565 cm−1 and no peak at 3600 cm−1, hydrocracking catalyst carrier comprising an amorphous binder and zeolite Y having a silica to alumina molar ratio of at least 10, which catalyst has an acidity as measured by exchange with perdeuterated benzene of at most 20 micromole/gram, hydrocracking catalyst derived from such carrier and hydrocracking process with the help of such catalyst.
Abstract:
Disclosed is a fuel additive which may remove varnish precursor species in a jet fuel. In particular, the fuel additive may be a multi-functional adsorbent which includes a 2-dimensional or 3-dimensional interconnected mesoporous or mixed micro-/mesoporous framework and a plurality of internal cavities formed in the mesoporous or mixed micro-/mesoporous framework and the internal cavities include charged sites to accommodate fuel contaminants for varnish formation, such as metal ions and heteroatomic contaminants. In addition, methods of preparing the multi-functional adsorbent and methods for removing varnish precursor species with the fuel additive are provided.
Abstract:
Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
Abstract:
The present invention provides an ultra-stable rare earth type Y molecular sieve and the preparation method thereof, which method is carried out by subjecting a NaY molecular sieve as the raw material to a rare earth exchange and a dispersing pre-exchange, then to an ultra-stabilization calcination treatment. The molecular sieve comprises 1 to 20% by weight of rare earth oxide, not more than 1.2% by weight of sodium oxide, has a crystallinity of 51 to 69%, and a lattice parameter of 2.451 nm to 2.469 nm. In contrast to the prior art, in the molecular sieve prepared by this method, rare earth ions are located in sodalite cages, which is demonstrated by the fact that no rare earth ion is lost during the reverse exchange process. Moreover, the molecular sieve prepared by such a method has a molecular particle size D(v,0.5) of not more than 3.0 μm and a D(v,0.9) of not more than 20 μm. Cracking catalysts using the molecular sieve as an active component is characterized by a high heavy-oil-conversion capacity and a high yield of valuable target products.
Abstract:
The present invention relates to a heavy oil catalytic cracking catalyst and preparation method thereof. The catalyst comprises 2 to 50% by weight of an ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The ultra-stable rare earth type Y molecular sieve is obtained as follows: the raw material, NaY molecular sieve, is subjected to a rare earth exchange and a dispersing pre-exchange, and the molecular sieve slurry is filtered, washed and subjected to a first calcination to produce a “one-exchange one-calcination” rare earth sodium Y molecular sieve, wherein the order of the rare earth exchange and the dispersing pre-exchange is not limited; and the “one-exchange one-calcination” rare earth sodium Y molecular sieve is further subjected to ammonium salt exchange for sodium reduction and a second calcination. The catalyst provided in the present invention is characteristic in its high heavy-oil-conversion capacity, a high total liquid yield and a high light oil yield.