Abstract:
A micromechanical component having a silicon substrate; a cavity provided in the substrate; and a diaphragm, provided on the surface of the substrate, which closes the cavity; the diaphragm featuring a silicon-oxide layer having an opening that is formed by silicon-oxide wedges pointing to each other; and the diaphragm having at least one closing layer which closes the opening. Also, a suitable manufacturing method.
Abstract:
The MEMS Sensor Suite on a Chip provides the capability, monolithically integrated onto one MEMS chip, to sense temperature, humidity, and two axes of acceleration. The device incorporates a MEMS accelerometer, a MEMS humidity sensor, and a MEMS temperature sensor on one chip. These individual devices incorporate proof masses, suspensions, humidity sensitive capacitors, and temperature sensitive resistors (thermistors) all fabricated in a common fabrication process that allows them to be integrated onto one micromachined chip. The device can be fabricated in a simple micromachining process that allows its size to be miniaturized for embedded and portable applications. During operation, the sensor suite chip monitors temperature levels, humidity levels, and acceleration levels in two axes. External circuitry allows sensor readout, range selection, and signal processing.
Abstract:
A process using integrated sensor technology in which a micromachined sensing element and signal processing circuit are combined on a single semiconductor substrate to form, for example, an infrared sensor. The process is based on modifying a CMOS process to produce an improved layered micromachined member, such as a diaphragm, after the circuit fabrication process is completed. The process generally entails forming a circuit device on a substrate by processing steps that include forming multiple dielectric layers and at least one conductive layer on the substrate. The dielectric layers comprise an oxide layer on a surface of the substrate and at least two dielectric layers that are in tension, with the conductive layer being located between the two dielectric layers. The surface of the substrate is then dry etched to form a cavity and delineate the diaphragm and a frame surrounding the diaphragm. The dry etching step terminates at the oxide layer, such that the diaphragm comprises the dielectric layers and conductive layer. A special absorber is preferably fabricated on the diaphragm to promote efficient absorption of incoming infrared radiation.
Abstract:
A method for manufacturing a semiconductor component (100; . . . ; 700), a multilayer semiconductor component in particular, preferably a micromechanical component, such as a heat transfer sensor in particular having a semiconductor substrate (101), in particular made of silicon, and a sensor region (404). For inexpensive manufacture of a thermal insulation between the semiconductor substrate (101) and the sensor region (404) a porous layer (104; 501) is provided in the semiconductor component (100; . . . ; 700).
Abstract:
A process using integrated sensor technology in which a micromachined sensing element and signal processing circuit are combined on a single semiconductor substrate to form, for example, an infrared sensor. The process is based on modifying a CMOS process to produce an improved layered micromachined member, such as a diaphragm, after the circuit fabrication process is completed. The process generally entails forming a circuit device on a substrate by processing steps that include forming multiple dielectric layers and at least one conductive layer on the substrate. The dielectric layers comprise an oxide layer on a surface of the substrate and at least two dielectric layers that are in tension, with the conductive layer being located between the two dielectric layers. The surface of the substrate is then dry etched to form a cavity and delineate the diaphragm and a frame surrounding the diaphragm. The dry etching step terminates at the oxide layer, such that the diaphragm comprises the dielectric layers and conductive layer. A special absorber is preferably fabricated on the diaphragm to promote efficient absorption of incoming infrared radiation.
Abstract:
This invention relates to the construction of microfabricated devices and, in particular, to types of microfabricated devices requiring thermal isolation from the substrates upon which they are built. This invention discloses vertical thermal isolators and methods of fabricating the vertical thermal isolators. Vertical thermal isolators offer an advantage over thermal isolators of the prior art, which were substantially horizontal in nature, in that less wafer real estate is required for the use of the vertical thermal isolators, thereby allowing a greater density per unit area of the microfabricated devices.
Abstract:
A sensor element provided with a silicon substrate having a semiconductor circuit, a sensing-element portion formed on the silicon substrate and connected to the semiconductor circuit, and a cavity portion formed by removing a silicon substrate portion below the sensing-element portion, in which a removal resistance region having resistance against substrate removal is provided in the silicon substrate between the semiconductor circuit and the cavity portion.
Abstract:
A laminated structure includes a wafer member with a membrane attached thereto, the membrane being formed of substantially hydrogen-free boron nitride having a nominal composition B.sub.3 N. The structure may be a component in a mechanical device for effecting a mechanical function, or the membrane may form a masking layer on the wafer. The structure includes a body formed of at least two wafer members laminated together with a cavity formed therebetween, with the boron nitride membrane extending into the cavity so as to provide the structural component such as a support for a heating element or a membrane in a gas valve. In another aspect borom is selectively diffused from the boron nitride into a surface of a silicon wafer. The surface is then exposed to EDP etchant to which the diffusion layer is resistant, thereby forming a channel the wafer member with smooth walls for fluid flow.
Abstract:
An integration of silicon carbide (SiC) pressure sensor and a temperature sensor on a single SiC substrate to facilitate the simultaneous measurement of pressure and temperature at temperature, and a method of fabricating the same.
Abstract:
The structure of a micro-electro-mechanical system (MEMS) thermal sensor and a method of fabricating the MEMS thermal sensor are disclosed. A method of fabricating a MEMS thermal sensor includes forming first and second sensing electrodes with first and second electrode fingers, respectively, on a substrate and forming a patterned layer with a rectangular cross-section between a pair of the first electrode fingers. The first and second electrode fingers are formed in an interdigitated configuration and suspended above the substrate. The method further includes modifying the patterned layer to have a curved cross-section between the pair of the first electrode fingers, forming a curved sensing element on the modified patterned layer to couple to the pair of the first electrodes, and removing the modified patterned layer.