Method and apparatus for manufacturing a device
    71.
    发明申请
    Method and apparatus for manufacturing a device 审中-公开
    用于制造装置的方法和装置

    公开(公告)号:US20020053756A1

    公开(公告)日:2002-05-09

    申请号:US09974829

    申请日:2001-10-12

    Abstract: A device, preferably a micro-device, is molded from a plastic material by injection molding, compression molding or embossing. A microabrader can be molded having microneedles for abrading the stratum corneum of the skin to form an abraded site in the tissue for enhancing drug delivery. The micro-device is molded using a mold assembly having a silicon molding surface. The silicon molding surface can include a recess corresponding to the desired shape and length of the microneedles. The silicon molding surface enables micron and submicron size features to be molded from polymeric materials without the polymeric material adhering to the mold surface. Micro-devices having molded features having micron and submicron dimensions can be rapidly produced without the use of a release agent.

    Abstract translation: 一种装置,优选一种微型装置,通过注塑,压塑或压花由塑料材料模制。 微型造型机可以模制成具有用于研磨皮肤角质层的微针,以在组织中形成用于增强药物递送的磨损部位。 使用具有硅模制表面的模具组件来模制微型装置。 硅成型表面可以包括对应于所需形状和长度的微针的凹部。 硅成型表面使得微米和亚微米尺寸的特征能够由聚合物材料模制而不会使聚合材料粘附到模具表面。 具有微米和亚微米尺寸的模制特征的微型装置可以在不使用脱模剂的情况下快速生产。

    Method for manufacturing microfabrication apparatus

    公开(公告)号:US20020019064A1

    公开(公告)日:2002-02-14

    申请号:US09874165

    申请日:2001-06-04

    Inventor: Masaki Hara

    CPC classification number: B81C1/0019 B81C2201/034

    Abstract: To offer a microstructure fabrication apparatus capable of realizing MEMS and a Rugate Filter excellent in performance characteristics by patterning a thick functional material film in high aspect ratio with a simple and practical manufacturing method. A Si layer is employed for a mask pattern. The advantages of the Si layer are withstood a process conducted at high temperature for forming a PZT layer, which is the functional material layer, patterned in high aspect ratio, and achieves excellent process consistency for the whole manufacturing processes of the microfabrication. A trench or a gap is formed with the mask pattern deeper than the desired PZT layer. The PZT layer, or functional material layer (films) is formed on the whole surface including the bottom of the concave part of the mask pattern. The PZT layer deposited on the mask pattern is removed with the mask pattern itself, and selectively remains the pattern of the PZT layer, thereby obtaining a pattern of the desired functional material layer.

    Designer particles of micron and submicron dimension
    73.
    发明授权
    Designer particles of micron and submicron dimension 失效
    设计颗粒的微米和亚微米尺寸

    公开(公告)号:US06284345B1

    公开(公告)日:2001-09-04

    申请号:US08980980

    申请日:1997-12-08

    Inventor: Rodney S. Ruoff

    Abstract: Micron-sized particles are produced in quantity by one of various methods, including generally the steps of preparing a substrate surface through a lithographic process, the surface being characterized by defining a plurality of elements, depositing a layer of particle material on the substrate surface including the elements, processing the substrate surface to isolate the material deposited on the elements, and separating the particles from the elements. The size and shape of the elements predetermine the size and shape of the particles. The elements may comprise, inter alia, pillars of photoresist or spaces on the substrate surrounded and defined by photoresist.

    Abstract translation: 通过各种方法之一量产生微米尺寸的颗粒,包括通常通过平版印刷工艺制备衬底表面的步骤,该表面的特征在于限定多个元件,在衬底表面上沉积颗粒材料层,包括 元件,处理衬底表面以分离沉积在元件上的材料,并将颗粒与元件分离。 元素的大小和形状预先决定了粒子的大小和形状。 这些元件尤其可以包括光致抗蚀剂的支柱或被光致抗蚀剂包围和限定的衬底上的空间。

    Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds
    74.
    发明授权
    Shape deposition manufacturing of microscopic ceramic and metallic parts using silicon molds 失效
    使用硅模具的微观陶瓷和金属部件的形状沉积制造

    公开(公告)号:US06242163B1

    公开(公告)日:2001-06-05

    申请号:US09387328

    申请日:1999-08-31

    CPC classification number: C23F1/00 B81C99/0085 B81C2201/019 B81C2201/034

    Abstract: Micro-Mold Shape Deposition Manufacturing (&mgr;-Mold SDM) is a method for fabricating complex, three-dimensional microstructures from layered silicon molds. Silicon wafers are etched using conventional silicon-processing techniques to produce wafers with surface patterns, some of which contain through-etched regions. The wafers are then stacked and bonded together to form a mold, which is filled with part material. In one embodiment, the part material is a ceramic or metallic gelcasting slurry that is poured into the mold and solidified to form a part precursor. The mold is removed, and the precursor is sintered to form the final part. The gelcasting material may also be a polymer or magnetic slurry, in which case sintering is not needed. The mold can also be filled by electroplating a metal into it; if necessary, each layer is filled with metal after being bonded to a previously filled layer. Patterned silicon wafer layers may also be combined with macroscopic wax layers formed by Mold SDM to create macroscopic parts with some microscopic parts or features.

    Abstract translation: 微模形状沉积制造(mu-Mold SDM)是从分层硅模制造复杂的三维微结构的方法。 使用常规的硅处理技术来蚀刻硅晶片以产生具有表面图案的晶片,其中一些具有贯通蚀刻区域。 然后将晶片堆叠并结合在一起以形成用部件材料填充的模具。 在一个实施例中,部件材料是陶瓷或金属凝胶浇注浆料,其被倒入模具中并固化以形成部件前体。 去除模具,并将前体烧结以形成最终部分。 凝胶浇铸材料也可以是聚合物或磁性浆料,在这种情况下不需要烧结。 模具也可以通过将金属电镀到其中来填充; 如果需要,每层在结合到预先填充的层之后都填充有金属。 图案化的硅晶片层还可以与由模具SDM形成的宏观蜡层组合以产生具有一些微观部件或特征的宏观部件。

    METHOD OF MANUFACTURING LAMINATE
    76.
    发明公开

    公开(公告)号:US20230294979A1

    公开(公告)日:2023-09-21

    申请号:US17695889

    申请日:2022-03-16

    CPC classification number: B81C1/00071 B81C2201/034

    Abstract: A manufacturing method capable of manufacturing a laminate including a substrate having a recess and a film with a high yield is provided. The method of manufacturing a laminate of the present invention includes: preparing a substrate having a recess; disposing a film on the substrate so as to cover the recess; and obtaining a laminate by thermocompression bonding between the film and the substrate by pressing the film and the substrate with a first elastic body and a second elastic body in a state in which the substrate on which the film is disposed is disposed between the first elastic body and the second elastic body such that the film is on the first elastic body side, in which the first elastic body is harder than the second elastic body.

    MANUFACTURING METHOD FOR 3D MICROELECTRODE
    77.
    发明公开

    公开(公告)号:US20230286799A1

    公开(公告)日:2023-09-14

    申请号:US18019447

    申请日:2021-09-23

    CPC classification number: B81C99/0085 B81C2201/034 B33Y80/00

    Abstract: Disclosed in the present disclosure is a manufacturing method for a 3D microelectrode. The manufacturing method includes the following steps: (1) manufacturing a 3D model of a 3D microelectrode; (2) pouring a flexible material into the 3D model, and performing demolding so as to form a flexible mold having a cavity, wherein the cavity of the flexible mold can be fitted to the 3D model; (3) performing silanization treatment on the flexible mold, then pouring a flexible material into the surface of the flexible mold having the cavity, and performing demolding so as to form a flexible 3D microelectrode substrate; and (4) manufacturing a conductive layer on the flexible 3D microelectrode substrate so as to form the 3D microelectrode. In the present disclosure, a 3D microelectrode having an ultrahigh microcolumn height can be manufactured by using a 3D printing technology and a two-time mold-reversing method.

    Aerogel-based mold for MEMS fabrication and formation thereof
    79.
    发明授权
    Aerogel-based mold for MEMS fabrication and formation thereof 有权
    用于MEMS制造和形成的基于气凝胶的模具

    公开(公告)号:US09138918B2

    公开(公告)日:2015-09-22

    申请号:US14455745

    申请日:2014-08-08

    Abstract: The invention is directed to a patterned aerogel-based layer that serves as a mold for at least part of a microelectromechanical feature. The density of an aerogel is less than that of typical materials used in MEMS fabrication, such as poly-silicon, silicon oxide, single-crystal silicon, metals, metal alloys, and the like. Therefore, one may form structural features in an aerogel-based layer at rates significantly higher than the rates at which structural features can be formed in denser materials. The invention further includes a method of patterning an aerogel-based layer to produce such an aerogel-based mold. The invention further includes a method of fabricating a microelectromechanical feature using an aerogel-based mold. This method includes depositing a dense material layer directly onto the outline of at least part of a microelectromechanical feature that has been formed in the aerogel-based layer.

    Abstract translation: 本发明涉及用作至少部分微机电特征的模具的图案化气凝胶基层。 气凝胶的密度小于MEMS制造中使用的典型材料的密度,例如多晶硅,氧化硅,单晶硅,金属,金属合金等。 因此,可以以明显高于在较致密的材料中形成结构特征的速率的速率在气凝胶层中形成结构特征。 本发明还包括一种图案化气凝胶层以产生这种基于气凝胶的模具的方法。 本发明还包括使用基于气凝胶的模具制造微机电特征的方法。 该方法包括将致密材料层直接沉积在已经形成在气凝胶层中的微机电特征的至少一部分的轮廓上。

Patent Agency Ranking