Abstract:
A method and apparatus for obtaining a color mapping of a dental object. Illumination is directed toward the object over at least a first and second wavelength band, one band at a time. An image of the dental object is captured at each wavelength band to form a set of images of the dental object. For pixels in the captured set of images, an image data value for the pixel corresponds to each of the wavelength bands and calculates interpolated image data values proportional to the spectral reflectance of the dental object, according to the obtained image data values and according to image data values obtained from a reference object at the wavelength bands. Spectral distribution data for a viewing illuminant is obtained and the visual color of the dental object reconstructed according to the calculated interpolated image data values and the obtained spectral distribution of the viewing illuminant.
Abstract:
An apparatus and method for preparing a stain to match a target color of a selected substrate (e.g., wood species). The apparatus and method may include a computer system and hardware or software to display to a user of such system an image array depicting a target image of a stained building material and a plurality of images of colored stains as applied to the same or other building materials.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A method for characterizing the color response of an imaging device, the method includes reproducing a color on the imaging device based on a set of device color coordinates; measuring spectral values for the reproduced color with a spectral measurement device controlled by a digital processing system; calculating a first set of tristimulus values from the spectral values; defining a set of human observer color matching functions, the set of human observer color matching functions being functions of the first set of tristimulus values of the reproduced color; calculating a second set of tristimulus values from the spectral values using the defined set of human observer color matching functions; and associating the reproduced device color coordinate with the second set of tristimulus values.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
The invention relates to a computer readable medium that includes one or more programs for carrying out a method for restoration of a patient's tooth. The method includes the steps of generating an electronic image of a patient's tooth; providing a preliminary treatment plan for addressing the dental needs of the patient; and forwarding the electronic image and preliminary treatment plan to a dental laboratory so that technician can evaluate the image and treatment plan and in a manner such that the technician and dentist can review and discuss the preliminary treatment plan.
Abstract:
To improve a method for making an overprint prediction to that extent, that the method allows more reliable overprint predictions with a reduced effort, the invention proposes a method for making the overprint prediction for a color combination, in which method a printing substrate and at least two printing colors and one gradation of hue values per printing color including the full tone as well as color combinations are predefined as data of the hue value of the n printing colors, wherein first of all individual color predictions comprising three transmittance components and the associated transmittance spectra for the respective hue value are determined for each of the n printing colors, wherein for an intended color combination up to (3 to the power of n) combinations of the transmittance components and the associated combined transmittance spectra are determined, and an overall reflectance spectrum of an overprint is predicted on the basis of the determined transmittance components with their transmittance spectra and the reflectance spectrum of the unprinted substrate.
Abstract:
A wavelength-tunable interference filter comprising a first substrate, a second substrate facing the first substrate, a first reflective film provided on the first substrate, a second reflective film provided on the second substrate, the second reflective film facing the first reflective film, a first electrode provided on the first substrate, and a second electrode provided on the second substrate, the second electrode facing the first electrode, wherein the first electrode includes a first electrode layer and a second electrode layer, the first electrode layer has a first in-plane internal stress which is compressive, and the second electrode layer has a second in-plane internal stress which is tensile.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A method and system to monitor randomly oriented objects on a process line are disclosed. A color camera is used initially to collect a set of reference images of at least one reference object. The reference images represent various spatial orientations of the reference object. The reference object serves as the standard for the process. The reference images are stored in a computer-based platform. The color camera is then used to capture images of monitored objects as the monitored objects pass by the color camera on a process line. The monitored objects may have a random spatial orientation with respect to the color camera as the monitored objects pass through the field-of-view of the color camera. The captured images of the monitored objects are processed by the computer-based platform and compared to the reference images in order to determine if certain characteristic parameters of the monitored objects have deviated from those same characteristic parameters of the reference object. If so, the process may be adjusted to correct for the deviations in order to bring the process back into tolerance.