Abstract:
A multilayer printed board comprising a plurality of capacitive coupling layers (6) each consisting of a dielectric layer (4) and a power supply layer (3) and a ground layer (5) facing each other while sandwiching the dielectric layer (4), first vias (7) connecting between the power supply layers (3) included in the plurality of capacitive coupling layers (6), and second vias (8) connecting between the ground layers (5) included in the plurality of capacitive coupling layers (6).
Abstract:
A substrate has a base, an intermediate layer a conductive layer, and conductive films. The base is a ceramic insulator. The intermediate layer on a main surface of the base. The conductive layer is on the intermediate layer The conductive films are on the conductive layer, covering an exposed portion of the conductive layer.
Abstract:
A capacitor capable of being incorporated into a packaging substrate, characterized in that the capacitor comprises a high-dielectric-constant layer, and an upper electrode layer and a lower electrode layer sandwiching the high-dielectric-constant layer from the upper side and the lower side. A packaging substrate containing the capacitor, and a method for producing the same are also provided.
Abstract:
Between dielectric ceramic sheets 11A-11C and magnetic ceramic sheets 13A-13C, metallic alkoxide solution films are formed so as not to interfere with wiring patterns 12A-12C and 14A-14C. Thereafter, the dielectric ceramic sheets 11A-11C and the magnetic ceramic sheets 13A-13C are stacked and heat-treated at the temperature of about 200-400null C. This heat treatment leads to a sol-gel reaction of the metallic alkoxide solution, thereby providing intermediate layers 15. Through the intermediate layers 15, the adjacent ceramic sheets are coupled with each other. Since the ceramic sheets are coupled with each other using the sol-gel reaction which proceeds at a low temperature of about 200-400null C., the ceramic laminate is prevented from being deformed due to a difference in the thermal shrinkage coefficient between the ceramic sheets, thereby providing a ceramic laminate with no warpage and peeling.
Abstract:
A method of making a charge containing element including the steps of depositing and patterning a dielectric material on a surface wherein the dielectric material includes a metallo-organic component and a liquid component; and decomposing by laser light the deposited dielectric material to substantially evaporate the liquid component to cause the metallic portion of the metallo-organic component to react with oxygen causing the dielectric material to have charge-holding properties.
Abstract:
A patterning method includes providing a first material (e.g., copper) and transforming at a least a surface region of the first material to a second material (e.g., copper oxide). One or more portions of the second material (e.g., copper oxide) are converted to one or more converted portions of first material (e.g., copper) while one or more portions of the second material (e.g., copper oxide) remain. One or more portions of the remaining second material (e.g., copper oxide) are removed selectively relative to converted portions of first material (e.g., copper). Further, a thickness of the converted portions may be increased. Yet further, a diffusion barrier layer may be used for certain applications.
Abstract:
A method is provided for manufacturing a multilayer wiring board wherein good adhesion is achieved between an insulating layer and a wiring pattern. The multilayer wiring board has a laminar structure which includes insulating layers and a wiring pattern. The method includes at least the steps of sticking a support whose surface has been treated with a coupling agent onto an insulating layer with a coupling agent interposed therebetween, and transferring the coupling agent to the insulating layer by removing the support while leaving the coupling agent on the insulating layer.
Abstract:
A patterning method includes providing a first material (e.g., copper) and transforming at a least a surface region of the first material to a second material (e.g., copper oxide). One or more portions of the second material (e.g., copper oxide) are converted to one or more converted portions of first material. (e.g., copper) while one or more portions of the second material (e.g., copper oxide) remain. One or more portions of the remaining second material (e.g., copper oxide) are removed selectively relative to converted portions of first material (e.g., copper). Further, a thickness of the converted portions may be increased. Yet further, a diffusion barrier layer may be used for certain applications.
Abstract:
A fabric comprising at least one fiber strand comprising a plurality of fibers and having a resin compatible coating composition on at least a surface of the at least one fiber strand, wherein the at least one fiber strand has an Air Jet Transport Drag Force value of greater than 100,000 gram force per gram mass of strand as determined by a needle air jet nozzle unit having an internal air jet chamber having a diameter of 2 millimeters and a nozzle exit tube having a length of 20 centimeters at a strand feed rate of 274 meters per minute and an air pressure of 310 kiloPascals. A reinforced laminate comprising: (a) at least one matrix material; and (b) at least one fabric comprising at least one fiber strand comprising a plurality of fibers and having a resin compatible coating composition on at least a surface of the at least one fiber strand, wherein the at least one fiber strand has an Air Jet Transport Drag Force value of greater than 100,000 gram force per gram mass of strand as determined by a needle air jet nozzle unit having an internal air jet chamber having a diameter of 0.2 millimeters and a nozzle exit tube having a length of 20 centimeters at a strand feed rate of 274 meters per minute and an air pressure of 310 kiloPascals.
Abstract:
A parallel capacitor structure capable of forming an internal part of a larger circuit board or the like structure to provide capacitance therefore. Alternatively, the capacitor may be used as an interconnector to interconnect two different electronic components (e.g., chip carriers, circuit boards, and even semiconductor chips) while still providing desired levels of capacitance for one or more of said components. The capacitor includes at least one internal conductive layer, two additional conductor layers added on opposite sides of the internal conductor, and inorganic dielectric material (preferably an oxide layer on the second conductor layer's outer surfaces or a suitable dielectric material such as barium titanate applied to the second conductor layers). Further, the capacitor includes outer conductor layers atop the inorganic dielectric material, thus forming a parallel capacitor between the internal and added conductive layers and the outer conductors.