Abstract:
A dielectric structure comprising: a metal foil; a dielectric layer; and a conductor layer provided in this order, wherein the metal foil has a thickness of from 10 to 40 μm, the dielectric layer has a thickness of from 0.3 to 5 μm, and the conductor layer has a thickness of from 0.3 to 10 μm, the dielectric structure has plural vias which are separated from each other, and which penetrate through both of the dielectric layer and the conductor layer, and the vias of the dielectric layer have different diameters which are in a range of from 100 to 300 μm, a diameter of each of the vias of the conductor layer is larger than a diameter of a corresponding via of the dielectric layer by 5 to 50 μm, and a minimum via pitch is from 100 to 350 μm.
Abstract:
A frequency converter is presented. The frequency converter includes a circuit module, which is interconnected to a circuit board and is connected to a heat sink. For attaining a frequency converter in a modular version with optimal cooling properties, the circuit module has a flexible, electrically insulating plastic film, which on one side has a circuit-structured logic metal layer and on the opposite side has a circuit-structured power metal layer that is contacted with a contact edge to a peripheral portion of the circuit board. The flexible circuit module protrudes at an angle away from the circuit board. Power semiconductor chips are contacted on the power metal layer. A substrate is secured to the heat sink and is embodied with a circuit structure for contacting the power semiconductor chips.
Abstract:
A power semiconductor module is presented. The power semiconductor module has a substrate, a composite film, and a power semiconductor component between the substrate and the composite film. The composite film has a thin circuit-structured logic metal layer and a thick circuit-structured power metal layer and between them a thin electrically insulating plastic film. The composite film includes contact nubs, which provide bonding to the power semiconductor component. Feedthrough holes are provided between the logic metal layer and the power metal layer. The plastic film in the region of the respective through-plated hole includes a recess in a region that is free of the logic metal layer. A segment of a flexible thin wire extends through the free region of the logic metal layer and through the recess in the plastic film and is bonded to the logic metal layer and the power metal layer by means of bonding sites.
Abstract:
There is provided a semiconductor device comprising: a first plating layer formed on one surface of an interconnect pattern; a second plating layer formed within through holes in the interconnect pattern; a semiconductor chip electrically connected to the first plating layer; an anisotropic conductive material provided on the first plating layer; and a conductive material provided on the second plating layer, wherein the first plating layer has appropriate adhesion properties with the anisotropic conductive material, and the second plating layer has appropriate adhesion properties with the conductive material.
Abstract:
A multi-path printed circuit board (PCB) comprising separate direct current (DC) and alternating current (AC) paths, and a power delivery system including the same are provided. The multi-path PCB comprises a plurality of planar layers, each comprising a metal layer, and a plurality of insulators interposed between the planar layers. The metal layers may have different conductivities. The power delivery system includes a power source, a semiconductor IC, and the multi-path PCB. The multi-path PCB is adapted to function as a power delivery path for delivering power from the power source to the semiconductor IC.
Abstract:
A method for fabricating conductive bumps of a circuit board is proposed. First of all, a circuit board having a first surface and a corresponding second surface is provided. A circuit structure having a plurality of conductive pads is formed on each of the first surface and the second surface, and conductive structures are formed in the circuit board for electrically connecting the circuit structures. Also, an insulating layer having a plurality of openings penetrating therethrough is formed on the circuit board for exposing the conductive pad. Then, a conductive layer is formed on a surface of the insulating layer having the opening formed on the first surface of the circuit board. An electroplating process is performed via the conductive layer and the conductive structure, such that a conductive bump is formed on the conductive pad located on the second surface of the circuit board. Subsequently, a resist layer is formed on the second surface of the circuit board to cover the conductive bump, and another resist layer having openings penetrating therethrough is formed on the first surface of the circuit board to expose the conductive pad. Finally, a conductive bump is formed on the conductive pad located on the first surface of the circuit board by an electroplating process. By such arrangement, the conductive bumps are successively formed on the first surface and the second surface of the circuit board.
Abstract:
A method of producing a multi-level electronic device that begins with machining into a sheet of dielectric material from a surface to create a set of first indentations at a first level. Conductive material is then deposited into the first indentations to create a set of first conductive features. The first indentations are then substantially filled with dielectric material. The process is continued by machining again into the sheet of dielectric material from a surface and thereby creating a set of second indentations at a second level. Further conductive material is deposited into the second indentations to create a set of second conductive features.
Abstract:
A semiconductor chip is provided that is highly packageable and particularly well suited for mounting on a circuit board having a curved surface. The semiconductor chip comprises a warpage control film that controls the warpage of a substrate.
Abstract:
This invention is a filter circuit having a filter element. A filter element (4) is a parallel resonator circuit including a pair of first resonator lines (19a) (19b) formed by a thick film forming technique and a pair of second resonator lines (20a) (20b). As the thickness of the pair of second resonator lines (20a) (20b) is significantly reduced, the impedance ratio between the pair of second resonator lines (20a) (20b) and the pair of first resonator lines (19a) (19b) is increased. Therefore, the length of these pairs of resonator lines (19a) (19b) (20a) (20b) is reduced and miniaturization of the filter element is realized.