Abstract:
A method for connecting a flexible printed circuit (FPC) with a flexible circuitry component containing conducting wires is disclosed. The flexible circuitry component has an uncovered conducting portion. The proposed method includes providing a tenon and a holder with a groove corresponding to the tenon; and utilizing the tenon to wedge the uncovered conducting portion of the flexible circuitry component and a connecting region of the FPC in the groove of the holder to cause that the uncovered conducting portion contacts the connecting region.
Abstract:
A flexible wiring cable includes a first wiring assembly connected to a load, a second wiring assembly connected to the first wiring assembly and extending toward an external signal source, and a circuit element mounted on the first wiring assembly to drive the load. The second wiring assembly is connected to the first wiring assembly at a position between the mounted circuit element and a connection point with the load. Thus, the heat of the circuit element is also transferred to the second wiring assembly, so that the effect of the heat on the load is reduced.
Abstract:
A guide pin is set in common in first and second voids defined in the peripheries of first and second flexible printed wiring boards. The second void has the shape identical to the shape of the first void. When the guide pin rotates around a rotation axis so as to bring the guide pin in contact with the peripheries of the first and second flexible printed wiring boards inside the first and second voids, the first and second flexible printed wiring boards can be arranged. This leads to arrangement of the first and second flexible printed wiring boards at a time in a facilitated manner.
Abstract:
In a magnetic connector acquiring connection with a mating connector by magnetic force, a base member has a particular surface to be faced to the mating connector upon connection. An electrode terminal is fixed to the base member and adapted to be electrically connected to the mating connector. The base member has a magnetic force generating portion having a plurality of magnetic poles for producing the magnetic force. N and the S poles of the magnetic poles are alternately arranged along the particular surface in a predetermined direction. Thus, the connector is properly positioned relative to the mating connector by the magnetic force.
Abstract:
In a joint of a first flexible printed circuit board (FPC board) dividedly manufactured and fixed to an optical pickup device main body and a second FPC board dividedly manufactured and inserted into a drive side connector in an optical pickup drive apparatus, the present invention is characterized in that an end face of a base film of at least one of the FPC boards extends outward from an end face of wiring conductor. In solder bonding of a first FPC board to a second FPC board, the present invention is characterized by having a solder dam formed at a leading end of wiring of the first FPC board so as to ensure a predetermined amount of solder for re-joint when the second FPC board is removed from the first FPC board and by narrowing an end of wiring of the second FPC board.
Abstract:
In a magnetic connector acquiring connection with a mating connector by magnetic force, a base member has a particular surface to be faced to the mating connector upon connection. An electrode terminal is fixed to the base member and adapted to be electrically connected to the mating connector. The base member has a magnetic force generating portion having a plurality of magnetic poles for producing the magnetic force. N and the S poles of the magnetic poles are alternately arranged along the particular surface in a predetermined direction. Thus, the connector is properly positioned relative to the mating connector by the magnetic force.
Abstract:
Provided is an electronic component including a pad region including a plurality of pads extending along corresponding extension lines and arranged in a first direction, and a signal wire configured to receive a driving signal from the pad region, wherein the plurality of pads include a plurality of first pads arranged continuously and a plurality of second pads arranged continuously, and extension lines of the plurality of first pads substantially converge into a first point and extension lines of the plurality of second pads substantially converge into a second point different from the first point.
Abstract:
A component carrier, wherein the component carrier includes: i) a layer stack with at least one electrically conductive layer structure and/or at least one electrically insulating layer structure, ii) a bendable portion which forms at least a part of the layer stack, and iii) a metal layer which forms at least a part of the bendable portion. Hereby, the metal layer extends over at least 75% of the area of the bendable portion.
Abstract:
A rigid-flex PCB includes an array of rigid PCB “islands” interconnected by a flexible PCB formed into flexible connectors. The conductive and insulating layers of the flexible PCB extend into the rigid PCBs, giving the electrical connections to the rigid PCBs added resistance to breakage as the rigid-flex PCB is repeatedly stressed by bending and twisting forces. In addition, the durability of the rigid-flex PCB is enhanced by making the power and signal lines driving the rigid PCBs redundant so that a breakage of a line will not necessarily affect the operation of the rigid PCB to which it is attached. The rigid-flex PCB is particularly applicable to light pads used in phototherapy, wherein LEDs mounted on the rigid-PCBs are powered and controlled through the redundant lines in the flexible PCB.
Abstract:
A signal transmission cable as a signal transmission component includes a laminate including a first thin portion on one of the opposite ends in a first direction and a second thin portion on the other end in the first direction. A portion between the first thin portion and the second thin portion in the laminate is a main line portion. The thickness of the first and second thin portions is thinner than the thickness of the main line portion. The surface on one end in the thickness direction of the laminate defined by the main line portion and the first and second thin portions is a continuous flat surface. A connector for external connection is arranged on the surfaces of the first and second thin portions, on the sides in which each of the thin portions and the main line portion have a difference in level.