Abstract:
A flexible, semirigid substrate, composed of a nonconducting material, supports a plurality of spaced, longitudinal conductors on one side thereof and a plurality of parallel, spaced, transverse conductors on the other side thereof. Through-hole connections are made through the substrate between selected longitudinal conductors and selected transverse conductors. The transverse conductors extend to a common edge of the substrate, which is formed with a longitudinal fold. The portion of each of the transverse conductors which extends over the longitudinal fold in the substrate is formed with an elongated opening which is disposed symmetrically about the axis of the transverse conductor. The longitudinal opening provides a saddle for receiving a portion of a terminal which rests in the saddle and can be subsequently soldered with the transverse conductor associated with the saddle.
Abstract:
A circuit board assembly includes a first circuit board and a second circuit board. The first circuit board includes a first contact pad and defines a stamped protrusion being correspondingly positioned relative to a position of the first contact pad, the first contact pad being outside the stamped protrusion. The second circuit board includes a second contact pad. The first contact pad on the stamping protrusion is in contact with the second contact pad to achieve electronic connections between the first circuit board and the second circuit board. A method for manufacturing the circuit board assembly is further disclosed.
Abstract:
A method is for making an electronic device that includes a multilayer circuit board having a non-planar three-dimensional shape defining a membrane switch recess therein. The multilayer circuit board may include at least one liquid crystal polymer (LCP) layer, and at least one electrically conductive pattern layer thereon defining at least one membrane switch electrode adjacent the membrane switch recess to define a membrane switch. The electronic may further include a compressible dielectric material filling the membrane switch recess. The electronic device may also include at least one spring member within the membrane switch recess.
Abstract:
A method is for making an electronic device including forming a multilayer circuit board having a non-planar three-dimensional shape defining a membrane switch recess therein, the multilayer circuit board including at least one liquid crystal polymer (LCP) layer, and at least one electrically conductive pattern layer thereon defining at least one membrane switch electrode adjacent the membrane switch recess to define a membrane switch. The method also includes filling the membrane switch recess with air, and positioning at least one biasing member in the membrane switch recess.
Abstract:
A circuit board includes a main portion and at least one uneven portion. The main portion is obtained by stacking a plurality of base sheets made of a flexible material in a predetermined direction and subjecting the stacked base sheets to compression bonding. The at least one uneven portion is provided on one of the base sheets. The uneven portion includes a concave portion and a convex portion extending in a direction perpendicular or substantially perpendicular to the predetermined direction. The concave portion is sunken in the predetermined direction. The convex portion protrudes in an opposite direction to the predetermined direction.
Abstract:
A manufacturing method of a circuit board including the following steps is provided. A carrier substrate is provided. A patterned photoresist layer is formed on the carrier substrate. An adhesive layer is formed on the top surface of the patterned photoresist layer. A dielectric substrate is provided. A circuit pattern and a dielectric layer covering the circuit pattern are formed on the dielectric substrate, wherein the dielectric layer has an opening exposing a portion of the circuit pattern. The adhesive layer is adhered to the dielectric layer in a direction that the adhesive layer faces of the dielectric layer. The carrier substrate is removed. A patterned metal layer is formed on a region exposed by the patterned photoresist layer. The patterned photoresist layer is removed. The adhesive layer is removed.
Abstract:
Lighting panels and methods of manufacturing lighting panels are described. An example lighting panel includes a substrate that has a planar surface, electrically conductive traces printed onto the planar surface of the substrate, and light sources mounted onto the electrically conductive traces at mounting positions such that the electrically conductive traces form an electrical interconnection between selected ones of the electrically conductive traces and associated ones of the light sources. The lighting panel also includes a polymer sheet provided over the light sources, and a composite base upon which a stack-up of the substrate with the printed electrically conductive traces, the light sources, and the polymer sheet is applied. The light sources are embedded into the composite base and are also flush with a top surface of the stack-up, and the substrate is also embedded into the composite base underneath the light sources at the mounting positions.
Abstract:
A terminal includes a terminal wiring part extending from a flexure and having an insulating layer and a wiring layer formed on the insulating layer, a terminal main part formed at a front end of the terminal wiring part and connected to a piezoelectric element arranged to face the terminal main part, and a terminal bender that is made of a supportive metal layer, is arranged along a part of the terminal wiring part in an extending direction thereof, and is plastically deformed to form a bend in the part of the terminal wiring part so as to bring the terminal main part closer to the piezoelectric element.
Abstract:
A circuit board includes a main portion and at least one uneven portion. The main portion is obtained by stacking a plurality of base sheets made of a flexible material in a predetermined direction and subjecting the stacked base sheets to compression bonding. The at least one uneven portion is provided on one of the base sheets. The uneven portion includes a concave portion and a convex portion extending in a direction perpendicular or substantially perpendicular to the predetermined direction. The concave portion is sunken in the predetermined direction. The convex portion protrudes in an opposite direction to the predetermined direction.
Abstract:
A termination unit (144) for use with a system that permits the monitoring of a computer network to perform network inventories. The termination unit takes the form of a cap that engages the termination face of a network jack and has a sensing circuit (246) integrated therewith so that, once engaged with the jack, the sensing circuit is connected to two terminals of the jack. The sensing circuit may include a resistor, capacitor or inductor, any of which provide a known sensing value that is different than a sensed value of an end-user device used on the network, but less than infinity so that the system senses when an end-user device is connected to or disconnected from the network.