Abstract:
An electronic device comprises a housing having an outer face and an inner face. A key is provided on the housing, which comprises a micro hole formed in the housing and a conductive material extending within the micro hole to the outer face of the housing. A sensor is coupled to the conductive material to detect whether an object is brought into contact or out of contact with the micro hole at the outer face.
Abstract:
A surface mount electrical interconnect adapted to provide an interface between solder balls on a BGA device and a PCB. The electrical interconnect includes a socket substrate with a first surface, a second surface, and a plurality of openings sized and configured to receive the solder balls on the BGA device. A plurality of electrically conductive contact tabs are bonded to the first surface of the socket substrate so that contact tips on the contact tabs extend into the openings. The contact tips electrically couple with the BGA device when the solder balls are positioned in the openings. Vias are located in the openings that electrically couple the contact tabs to contact pads located proximate the second surface of the socket substrate. Solder balls are bonded to the contact pad that are adapted to electrically and mechanically couple the electrical interconnect to the PCB.
Abstract:
A printed circuit board includes an accommodating layer, chip capacitor devices accommodated in the accommodating layer, and a buildup structure formed on the accommodating layer such that the buildup structure covers the chip capacitor devices in the accommodating layer. The buildup structure has mounting conductor structures positioned to mount an IC chip device on a surface of the buildup structure such that the IC chip device is mounted directly over the chip capacitor devices, each of the chip capacitor devices has a dielectric body having a surface facing the buildup structure, a first electrode formed on the dielectric body and extending on the surface of the dielectric body, and a second electrode formed on the dielectric body and extending on the surface of the dielectric body, and the dielectric body is interposed between the first electrode and the second electrode.
Abstract:
Method of manufacturing printed circuit board, including: providing a substrate including a first circuit layer having a lower land of a via; forming an insulating layer on the first circuit layer; forming a via hole in the insulating layer; filling the via hole with a first metal, thus forming a via; forming a seed layer with a second metal on the insulating layer and an exposed surface of the via; applying a resist film on the seed layer, and forming a resist pattern having an opening for a second circuit layer with a width formed on the via being smaller than a width of the via; plating a circuit region defined by the opening with a third metal, thus forming a plating layer formed of the third metal; and removing the resist film, and selectively removing an exposed portion of the seed layer, thus forming a second circuit layer.
Abstract:
A circuit substrate having a base layer, a patterned conductive layer, a dielectric layer and a conductive block is provided. The patterned conductive layer is disposed on the base layer and having an inner pad. The dielectric layer is disposed on the base layer and covering the patterned conductive layer. The conductive block penetrates the dielectric layer, the conductive block being substantially coplanar with the dielectric layer and connecting the inner pad.
Abstract:
A method of manufacturing a printed circuit board, including: preparing a double-sided substrate which comprises an insulating layer, a first copper layer formed on one side of the insulating layer and a second copper layer formed on the other side of the insulating layer; forming a via-hole through the second copper layer and the insulating layer; forming a plating layer on an inner wall of the via-hole; and forming, on the double-sided substrate, a via, a first circuit layer including a circuit pattern that is formed on a surface of the via having a minimum diameter and has a line width smaller than the minimum diameter of the via, and a second circuit layer including a lower land.
Abstract:
Method of manufacturing printed circuit board, including: providing a substrate including a first circuit layer having a lower land of a via; forming an insulating layer on the first circuit layer; forming a via hole in the insulating layer; filling the via hole with a first metal, thus forming a via; forming a seed layer with a second metal on the insulating layer and an exposed surface of the via; applying a resist film on the seed layer, and forming a resist pattern having an opening for a second circuit layer with a width formed on the via being smaller than a width of the via; plating a circuit region defined by the opening with a third metal, thus forming a plating layer formed of the third metal; and removing the resist film, and selectively removing an exposed portion of the seed layer, thus forming a second circuit layer.
Abstract:
A process for fabricating a circuit substrate is provided. A patterned conductive layer having an inner pad is provided on a base layer, a dielectric layer is disposed on the base layer and covers the patterned conductive layer, and a covering layer is disposed on the dielectric layer. A part of the covering layer is removed by dry etching to form a first opening. A part of the dielectric layer exposed by the first opening is removed to form a dielectric opening exposing a part of the inner pad. A patterned mask having a second opening to expose a part of the inner pad is formed on the covering layer. A conductive structure including a conductive block filling the dielectric opening, an outer pad filling the first opening and a surplus layer filling the second opening is formed. Finally, the patterned mask, surplus layer and covering layer are removed.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
A printed circuit board (PCB) includes a top layer, a bottom layer, and reference layers between the top layer and the bottom layer. A via defined through the top layer, reference layers, and the bottom layer has only two pads at the reference layers.