Abstract:
The invention provides a submersible, electrically-powered sensor assembly that incorporates a flexible seal assembly having operative and non-operative electrical traces of a uniform vertical height for carrying clamping loads and avoiding signal loss along a signal carrying trace due to compression of the flex seal, minimizing fluid leak paths between two flange surfaces, providing stability in compression, and enabling electrical communication in an environment having an operating fluid.
Abstract:
A circuit board structure includes a circuit board and at least one adsorption strip set on the circuit board. The circuit board defines at least one group of pin holes arranged along a predetermined line to receive a number of pins of an electronic component. The adsorption strip absorbs excess conducting material between adjacent pins during a wave-soldering process.
Abstract:
A module includes a multilayer body including laminated ceramic green sheets that have been fired, multiple mounting terminals arranged to mount a component thereon, the mounting terminals each including an end surface that is exposed at a main surface of the multilayer body, and multiple via conductors disposed inside the multilayer body so as to correspond to the mounting terminals at positions overlapped by the corresponding mounting terminals when viewed in a plan view. The lengths of the via conductors are adjusted so that predetermined points on the mounting terminals are positioned on the same plane.
Abstract:
A flexible printed circuit assembly, having a first flexible printed circuit having a first conductive layer and a device that is connected the first conductive layer; and a second flexible printed circuit having a second conductive layer, an insulating center layer, and a third conductive layer, the insulating center layer arranged in-between the second and the third conductive layers, the second conductive layer and the insulating center layer being removed to form an opening to expose an upper surface of the third conductive layer, wherein the first flexible printed circuit is arranged such that the device is accommodated inside the opening, a lower surface of the device being in thermal connection with the third conductive layer, and the first conductive layer is arranged to be in electrical connection with the second conductive layer.
Abstract:
A method includes patterning a layer over a substrate with a first metal pattern; using a cut mask in a first position relative to the substrate to perform a first cut patterning for removing material from a first region within the first pattern; and using the same cut mask to perform a second cut patterning while in a second position relative to the same layer over the substrate, for removing material from a second region in a second metal pattern of the same layer over the substrate.
Abstract:
Disclosed is a light emitting device array. The light emitting device array comprises a light emitting device and a body comprises first and second lead frames electrically connected to the light emitting device and a substrate on which the light emitting device package is disposed, the substrate comprises a base layer and a metal layer disposed on the base layer and electrically connected to the light emitting device package, wherein the metal layer comprises first and second electrode patterns electrically connected to the first and second lead frames and a heat dissipation pattern insulated from at least one of the first or(and) second electrode patterns, absorbing heat generated from at least one of the base layer or(and) the light emitting device package and then dissipating the heat.
Abstract:
A display device at which the contact-type wiring inspection can be accurately carried out is provided. In a display device in which two or more kinds of lines are arranged on a substrate by way of an interlayer insulation film, in at least a partial region of the substrate outside a display region, a plurality of upper-layer lines which are arranged parallel to each other on an upper side of the interlayer insulation film, lower-layer lines which are arranged on a lower side of the interlayer insulation film and between the upper-layer lines or adjacent to the upper-layer lines, and adjustment layers for adjusting a height which are arranged on a lower side of the interlayer insulation film and below the upper-layer lines so as to position surfaces of the upper-layer lines at a highest position on the substrate are formed.
Abstract:
A method for manufacturing a multi-piece board having a frame section and a multiple piece sections connected to the frame section includes forming a frame section from a manufacturing panel for the frame section, sorting out multiple acceptable piece sections by inspecting quality of piece sections, forming notch portions in the frame section and the acceptable piece sections such that the notch portions allow the acceptable piece sections to be arranged with respect to the frame section, provisionally fixing the piece sections and the frame section in respective positions, injecting an adhesive agent into cavities formed by the notch portions when the frame section and the piece sections are provisionally fixed to each other, and joining the acceptable piece sections with the frame section by curing the adhesive agent injected into the cavities.
Abstract:
A printed circuit board is designed to meet the following requirements. A front-back copper foil residual rate difference a−b falls within a range of −10% to 10%, where the insulative board is divided into a plurality of divisions, in which front and back surface copper foil residual rates of each division are a % and b %, respectively. A difference (a−b)−(c−d) between front-back copper foil residual rate differences of adjacent divisions falls within a range of −10% to 10%, where the front and back surface copper foil residual rates of a division adjacent to the each division are c % and d %, respectively. There are not three or more consecutive divisions for which the difference between the front-back copper foil residual rate differences goes beyond a range of −5% to 5%.
Abstract:
A structure includes a substrate having a plurality of balls, a semiconductor chip, and an interposer electrically connecting the substrate and the semiconductor chip. The interposer includes a first side, a second side opposite the first side, at least one first exclusion zone extending through the interposer above each ball of the plurality of balls, at least one active through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one active through via is formed outside the at least one first exclusion zone and wherein no active through vias are formed within the at least one first exclusion zone, and at least one dummy through via extending from the first side of the interposer to the second side of the interposer, wherein the at least one dummy through via is formed within the at least one first exclusion zone.