Abstract:
A method of fabricating MEMS devices is provided. The method includes the steps of (a) providing a silicon wafer having a MEMS layer arranged on a MEMS side of the wafer; (b) applying a first holding means to the MEMS side of the wafer; (c) performing at least one operation on the wafer from a back side of the wafer opposed to the MEMS side; (d) applying a second holding means to said back side of the wafer; (e) removing the first holding means; (f) performing at least one deep silicon etch on the MEMS side of the wafer to define individual MEMS chips, each chip being composed of a part of the wafer and at least one part of the MEMS layer; and (g) causing the individual chips to be released from the second holding means.
Abstract:
A method of manufacturing a fluid injection device. The method of the present invention applies a compensated geometric shape of the unetched isolating portions to increase the additional compensated portion for etching, or the ion implanting process to reduce the etching rate of the unetched isolating portions. Thus, crosstalk or overshoot in the isolating portions of the fluid injection device can be reduced, and the fluid injection device can be precisely manufactured in a small size.
Abstract:
A method of manufacturing a microelectronics device is provided, wherein the microelectronics device is formed on a substrate having a frontside and a backside. The method comprises forming a circuit element on the frontside of the substrate from a plurality of layers deposited on the frontside of the substrate, wherein the plurality of layers includes an intermediate electrical contact layer, and forming an interconnect structure after forming the electrical contact layer. The interconnect structure includes a contact pad formed on the backside of the substrate, and a through-substrate interconnect in electrical communication with the contact pad, wherein the through-substrate interconnect extends from the backside of the substrate to the electrical contact layer.
Abstract:
The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes. The method is also useful whenever it is necessary to maintain tight control over the dimensions of the shaped opening.
Abstract:
A thermal bend actuator (6) is provided with upper arms (23, 25, 26) and lower arms (27, 28) which are non planar, so increasing the stiffness of the arms. The arms (23, 25, 26, 27, 28) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material.
Abstract:
The present invention relates to a method of manufacturing microstructure by the anisotropic etching and bonding of substrates so as to manufacture mechanically functioning micro-structures in various forms by uniting the same or different substrate bonding technique and selective anisotropic etching technique. This invention manufactures a pyramidal optical divider or an optical divider with a pyramidal structure located on a quadrilateral pillar by bonding one substrate on a substrate different in the direction of crystallization and anisotropically etching them thereafter. This invention manufactures variously shaped nozzles by bonding those substrates crystallized in a different direction and anisotropically etching them so that substrates bonded by one photograph transferring process may form different etching holes. This invention manufactures a diaphragm having a uniform thickness and a wide area by bonding two substrates different in the direction of crystallization or in the concentration of an impurity, removing a substrate of prescribed concentration and anisotropically etching only one substrate of the remaining substrates.
Abstract:
Disclosed is a method of fabricating a precision etched, three dimensional device from a silicon wafer, wherein the etching is done from one side of the wafer using a two step silicon etching process. A two-sided deposition of a robust protective layer, such as polycrystalline silicon, is placed over a two-sided deposition of a chemical masking layer such as silicon dioxide. The two layers are concurrently patterned with first and second sets of vias on one side of the wafer, while the opposite side is protected by the protective layer. The protective layer is removed to permit deposition of a second masking layer such as silicon nitride, followed by deposition of a second protective layer. Again, the second protective layer prevents damage to the fragile second masking layer on the wafer backside while its frontside is patterned with a similar set of vias aligned with the first set of vias in the first masking layer. This similar set of vias is sequentially formed in both the second protective layer and the underlying second masking layers. Then the wafer is placed in an etchant bath so that the first set of recesses is anisotropically etched in the wafer frontside side. Next, the second protective layer and second masking layer are removed to permit anisotropic etching of the second set of recesses through the second set of vias in the first masking layer. If the protective layer is polycrystalline silicon, it is concurrently etch-removed during the initial etching of the silicon wafer.
Abstract:
A MEMS chip assembly includes: a support structure having a chip mounting surface; a MEMS chip mounted on the chip mounting surface, the MEMS chip having an active surface including one or more rows of MEMS devices and a row of bond pads disposed alongside a connection edge of the MEMS chip and parallel with the rows of MEMS devices; electrical connectors connected to the bond pads; and an encapsulant material covering the electrical connectors. The MEMS chip has a plurality of trenches defined in the active surface, the trenches extending parallel with the rows of MEMS devices and disposed between the bond pads and the MEMS devices. The encapsulant material does not encroach past the trenches towards the MEMS devices.
Abstract:
A MEMS device includes a first substrate 22 including a single-crystal silicon substrate and a second substrate 23 including a single-crystal silicon substrate, in which the first substrate 22 and the second substrate 23 are laminated together, and the first substrate 22 and the second substrate 23 are joined to each other such that the cleavage directions of both substrates intersect each other.
Abstract:
Provided are an MEMS device, a head, and a liquid jet device in which substrates are inhibited from warping, so that a primary electrode and a secondary electrode can be reliably connected to each other. Included are a primary substrate 30 provided with a bump 32 including a primary electrode 34, and a secondary substrate 10 provided with a secondary electrode 91 on a bottom surface of a recessed portion 36 formed by an adhesive layer 35. The primary substrate 10 and the secondary substrate 30 are joined together with the adhesive layer 35, the primary electrode 34 is electrically connected to the secondary electrode 91 with the bump 32 inserted into the recessed portion 36, and part of the bump 32 and the adhesive layer 35 forming the recessed portion 36 overlap each other in a direction in which the bump 32 is inserted into the recessed portion 36.