Abstract:
The present disclosure relates generally to systems and methods for determining the absorption coefficient and the optical density of a fluid as they relate to the wavelength of incident radiation. Specifically, ultraviolet light-emitting diodes (UV LEDs) or the like that emit ultraviolet (UV) radiation or the like are used as sources for irradiating the interior of an integrating chamber that is designed to increase the path length of the radiation through the fluid, thus enhancing the detection limits of the absorption coefficient and the optical density according to Beer's Law.
Abstract:
A device for monitoring and controlling water disinfecting systems having at least one broadband UV emitter arranged in a channel, wherein the device has at least one sensor, which is arranged in the water at a distance from the broadband UV emitter, and wherein the sensor is connected to a control unit, which is set up to control the output of the broadband UV emitter or the volumetric flow of water through the channel, wherein the sensor has a maximum sensitivity to UV radiation in a wavelength range between 200 nm and 240 nm.
Abstract:
The present disclosure relates to the technical field of degradation of persistent pollutants and discloses a method for efficiently degrading a perfluorinated compound (PFC), through which the problems of harsh reaction conditions and less high defluorination rate existing in prior-art methods for degrading PFCs are solved. In the present disclosure, a 3-indoleacetic acid (IAA) solution is irradiated with 254 nm UV light to generate hydrated electrons, with which the PFC are degraded by reduction under an aerobic condition, where an organo-modified montmorillonite is added to provide a reaction microzone, so the degradation and defluorination effects of the hydrated electrons for the PFC are greatly improved. The method for degrading a PFC according to the present disclosure is not affected by the pH of and the dissolved oxygen in the solution and less affected by the humic substances in a water body, thereby overcoming the defects in existing methods for degrading PFCs with hydrated electrons while the degradation efficiency is ensured. Therefore, the present disclosure is of great application value.
Abstract:
Methods and systems are provided for disinfecting water mains using ultraviolet (UV) light and advanced oxidation processes. One or more UV light sources are provided and secured to a movable device that moves axially in a pipe. The frequency and intensity of the UV light is determined based on characteristics of the pipe, such as its material and size. The rate at which the movable device moves through the pipe is also determined so that the interior surface of the pipe is properly disinfected. The movable device is remotely caused to move through the pipe. An oxidant supply component having a dispensing portion dispenses an oxidizing agent into the pipe. A portion of the emitted UV light may convert the dispensed oxidizing agent into additional oxidizing agents that further disinfect the pipe.
Abstract:
According to an embodiment, an ultraviolet (UV) irradiation apparatus includes a treatment tank, a UV irradiation member, a UV sensor, and an air outlet unit. The air outlet unit is connected to an air outlet hole provided at a position higher than a horizontal plane that passes through the UV sensor, and is provided to release, to the outside of the treatment tank, through the air outlet hole, air that accumulates inside the treatment tank when the treated waterlasses through the inside of the treatment tank.
Abstract:
A method for inducing continuous separation of copper ions from copper using UV-light source, comprising the following steps: (1) cutting apiece of copper into wires or slices for immersing into a vessel containing water; switching on a stirrer for stirring the water continuously and keeping the copper being immersed in the water; (2) turning on the UV-light source for irradiating the copper and the water continuously; appearing a large amount of white precipitate in the water; (3) filtering the solution; detecting the filtered solution, a certain concentration copper ions in the filtered solution are found; adding hydrochloric acid by drops into the unfiltered original solution, the white precipitate is dissolved and copper ions are detected. The invention makes the copper separate out copper ions continuously and can be applied to copper ion disinfection for swimming-pool water, scenic water and cooling water, etc.
Abstract:
The present invention concerns a device (10) for the photochemical treatment of a liquid medium, the device (10) having at least one flow channel (16a, 16b) for the liquid medium to pass through, said flow channel being delimited at least in sections by a UV-light-emitting surface (14) of at least one UV-light-producing body (12). The at least one UV-light-producing body (12) is designed such that the passing liquid medium can be electrically contacted and replaces at least one electrode for producing the UV light in the device (10).
Abstract:
An UV reactor system that allows single or multiple flange-less reactors to be installed between the flanges of existing piping systems. Benefits include reduced installation space and lamp placement flexibility to improve UV treatment. Each reactor can be rotated, pre and post installation, to provide multiple positions for the radiation sources that are included in each reactor.
Abstract:
A UV lamp module having a frame and at least two lamp units, wherein each lamp unit includes a UV lamp extending in an axial direction, a jacket tube enclosing the UV lamp, electrical connections and a head section for fastening the lamp unit to the frame, wherein for each lamp unit, a fastening device is provided by which the lamp unit can be separably connected to the frame in the region of the head section.
Abstract:
Subject matter of the invention is the procedure and plant for industrial wastewater and/or drinking water treatment by means of electrochemical methods and advanced oxidation processes. The preparatory phase of gravitational sedimentation is followed by main treatment consisting of electrocoagulation, electrooxidation and electroflotation through action of metal electrode sets made of inox, steel and aluminium respectively, with parallel disinfection/oxidation with ozone, UV irradiation and ultrasonic treatment, as well as recirculation in the electromagnetic field. At the end of the main treatment, the mixture of floccule and water is subject to coagulation/flocculation by electrochemically generated steel and aluminium floccule with slow infusion of ozone. The next phase is separation of sediment from clean water which is discharged through sand and activated charcoal filters for the purpose of removal of light floating floccule in the collection tank. If required, the water is subject to oxidation with simultaneous action of UV irradiation and ozone for the purpose of final destruction of organic matter and ammonia, and potential residues of microbiological contamination.