Abstract:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
Abstract:
Compositions, and processes utilizing such compositions, are provided for reducing mercury emissions during fuel combustion Such compositions comprise a sorbent, a bromine source and a chlorine source Such compositions exhibit improved thermal stability as compared to that of the sorbent by itself.
Abstract:
The invention provides a metal alloy fuel catalyst for decontaminating a hydrocarbon fuel, including diesel and bio-diesel fuel, of a bacterial contamination and for improving fuel combustion. The metal alloy fuel catalysts preferably includes about 70% Sn, about 22% Sb, about 4% Bi, and about 4% Pb, although other formulations are possible. The fuel catalyst can take the form of an in-line component in a fuel system or be coated within a fuel storage container.
Abstract:
Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
Abstract:
There is disclosed a fuel composition comprising: a water-free, organic fuel; and a nanoalloy represented by the following generic formula (Aa)n(Bb)n(Cc)n(Dd)n( . . . )n; wherein each capital letter and ( . . . ) is a metal; wherein A is a combustion modifier; B is a deposit modifier; C is a corrosion inhibitor; and D is a combustion co-modifier/electrostatic precipitator enhancer; wherein each subscript letter represents compositional stoichiometry; wherein each n is independently greater than or equal to zero; wherein the nanoalloy comprises at least two different metals; and with the proviso that if the metal is cerium, then its compositional stoichiometry is less than about 0.7.
Abstract:
The present invention relates to a process for producing clean petroleum fuel by reducing sulfur content, and raising the Cetane Number to a value above 50, in a process that may be carried out at one atmospheric pressure.
Abstract:
The disclosure relates to new surfactants of bis-N-alkyl polyether, bis-N-alkenyl polyether, bis-N-cycloalkyl polyether, bis-N-aryl polyether bis-beta or alpha-imino acids or their salts, process for obtaining and using mainly as multifunctional corrosion inhibitors, which protect and prevent corrosion of ferrous metals exposed to acidic, basic and neutral when transporting or storing crude oil and liquid fuels, or to the equipment and pipes used in cooling systems industry petroleum and petrochemical industries. Gemini surfactants have the structural formula: where: R1 is a radical represented by —H or —CH3, R2 is an alkyl or alkenyl chain, or cycloalkyl or aryl; R3 is a radical represented by —H, —CH3, —CH═CH—CH3, or —COOX; R4 is a radical represented by —H, —CH3, or —CH2—COOX; R5 is a radical represented by —H, an alkyl or alkenyl, cycloalkyl or aryl group, or a metal; R6 is a radical represented by an alkyl, alkenyl, cycloalkyl or aryl group; n and m can have values from 1 to 250, depending on the molecular weight of polyether used; and i can have values of 0 and 1: In the radical —COOX used in R3 and R4, X is represented by: —H, an alkyl, alkenyl group, a cycloalkyl or aryl group, or a metal.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
The invention provides a metal alloy fuel catalyst for decontaminating a hydrocarbon fuel, including diesel and bio-diesel fuel, of a bacterial contamination and for improving fuel combustion. The metal alloy fuel catalysts preferably includes about 70% Sn, about 22% Sb, about 4% Bi, and about 4% Pb, although other formulations are possible. The fuel catalyst can take the form of an in-line component in a fuel system or be coated within a fuel storage container.
Abstract:
Tropospheric volume elements enriched with vital elements and/or protective substances as well as procedures for their production and application. The term “vital elements” applies to all matter supporting the development of life within the earth's biosphere and the term “protective substances” means all those substances which contribute directly or indirectly to the prevention of harmful effects on the earth's biosphere and in particular on man. Tropospheric volume elements in the form of clouds which contain contaminants and which can escape from industrial facilities due to damage or malfunction are enriched with protective substances which prevent the organism from taking in radioactive elements and minimize the extent of the area affected by the clouds and possess additional warning and identification properties.