Abstract:
A multispectral imaging system and method in which the zero-mode channel is used to provide imaging of any of a variety of optical properties. In one example an imaging method includes spectrally dispersing received electromagnetic radiation into its spectral components with a dispersive element to produce spectrally dispersed electromagnetic radiation, transmitting the electromagnetic radiation through the dispersive element to produce non-dispersed electromagnetic radiation corresponding to a zero order diffraction mode of the dispersive element, imaging the non-dispersed electromagnetic radiation to produce a zero-mode image, and simultaneously imaging the spectrally dispersed electromagnetic radiation to produce a spectral image.
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
Techniques for identifying images of a scene including illuminating the scene with a beam of 3 or more wavelengths, polarized according to a determined direction; simultaneously acquiring for each wavelength an image X//(λi) polarized according to said direction and an image X⊥(λi) polarized according to a direction perpendicular to said direction, X⊥(λi) being spatially distinct from X//(λi); calculating for each wavelength an intensity image which is a linear combination of X//(λi) and X⊥(λi), providing an intensity spectrum for each pixel; calculating for each wavelength a polarization contrast image on the basis of an intensity ratio calculated as a function of X//(λi) and of X⊥(λi), providing a polarization contrast spectrum for each pixel; and calculating a spectro-polarimetric contrast image of the scene, each pixel of this spectro-polarimetric contrast image calculated based on the intensity spectrum and the contrast spectrum of the pixel considered.
Abstract:
A method for imaging a sample, the method includes, during a single acquisition event, receiving a first polarization-encoded EM field for a first point and a second polarization-encoded EM field for a second point. The method further includes re-directing the first polarization-encoded EM field along a first pre-determined direction to a first location on a dispersing re-imager and the second polarization-encoded EM field along a second pre-determined direction to a second location on the dispersing re-imager. The method further includes spectrally dispersing the first polarization-encoded EM field to obtain a first spectrum, re-imaging the first spectrum onto a first location on a detector, spectrally dispersing the second polarization-encoded EM field to obtain a second spectrum, re-imaging the second spectrum onto a second location on the detector, and detecting the first re-imaged spectrum and the second re-imaged spectrum.
Abstract:
Designs, implementations, and techniques for optically measuring a sample to obtain spectral absorbance map of the sample. Light at different wavelength bands may be used to detect different absorption features in the sample. Multiple light sources may be used including tunable lasers.
Abstract:
An optical method and system for measuring characteristics of a sample using a broadband metrology tool in a purge gas flow environment are disclosed. In the method a beam path for the metrology tool is purged with purge gas at a first flow rate. A surface of the sample is illuminated by a beam of source radiation having at least one wavelength component in a vacuum ultraviolet (VUV) range and/or at least one wavelength component in an ultraviolet-visible (UV-Vis) range. A flow rate of a purge gas is adjusted between the first flow rate for metrology measurements made when the source radiation is in the VUV spectral region and a second flow rate for metrology measurements made when the source radiation is in the UV-Vis spectral region. The system includes a light source, illumination optics, collection optics, detector, a purge gas source and a controller. The purge gas source is configured to supply a flow of purge gas to a beam path in the light source and/or illumination optics and/or sample and/or collection optics and/or detector. The controller is configured to control a flow rate of the purged gas flow in response to an output signal from the detector.
Abstract:
Provided is a tunable filter including: a polarization splitter that splits input light into two linearly polarized light rays of mutually orthogonal vibration directions; a wavelength dispersion spectroscopic element that splits the two linearly polarized light rays split by the polarization splitter, into two spectral images having spatial spread in one direction, the two spectral images corresponding to the two linearly polarized light rays; and a reflective spatial modulator device that modulates and reflects linearly polarized light in each wavelength region for the two spectral images independently from each other, where modulated light reflected at the reflective spatial modulator device reenters the wavelength dispersion spectroscopic element and the polarization splitter, thereby splitting and outputting the modulated light, as output light in a wavelength region modulated by the reflective spatial modulator device and output light in a wavelength region not modulated, and input light and reentered light to the polarization splitter and input light and reentered light to the wavelength dispersion spectroscopic element are parallel light fluxes.
Abstract:
A spectrometric analyzing device is capable of analyzing a thin film with high accuracy by using light having an arbitrary wavelength, such as not only infrared light but also visible light, ultraviolet light and X-ray, and using whatever refractive index of a supporting member of the thin film. A spectrometric analyzing device comprises a light source (1), a polarizing filter (2), a detection unit (3), a regression operation unit (4) and an absorbance spectrum calculation unit (5). The light source (1) emits light at n different angles of incidence (θn) to a measurement portion. The polarizing filter (2) shields an s-polarized component. The detection unit (3) detects transmitted spectra (S). The regression operation unit (4) uses the transmitted spectra (S) and a mixing ratio (R) to obtain an in-plane mode spectrum (sip) and an out-of-plane mode spectrum (sop) through a regression analysis. The absorbance spectrum calculation unit (5) calculates an in-plane mode absorbance spectrum (Aip) and an out-of-plane mode absorbance spectrum (Aop) of the thin film, based on the results from a state in which the thin film is on the supporting member and a state in which no thin film is on the supporting member.
Abstract:
Viscous oil residues are located based on fluorescence polarization. Methods and apparatus in accordance with the invention may be integrated with autonomous and remotely operated undersea vehicles to map the location of oil spills.