Abstract:
There is disclosed a multipole lens that can be machined with improved accuracy. A method of fabricating this lens is also disclosed. The multipole lens has a blank material from which polar elements will be fabricated. The blank material is sandwiched vertically between two layers of filmy insulator. The blank material and the two layers of filmy insulator are sandwiched vertically between an upper ring and a lower ring. These members are provided with injection holes for injecting a curing agent. The injection holes of these members are aligned. The curing agent is injected into the holes and cured. Then, the blank material is machined by electric discharge machining to form the polar elements.
Abstract:
A pattern inspection method in which an image can be detected without an image detection error caused by an adverse effect to be given by such factors as ions implanted in a wafer, pattern connection/non-connection, and pattern edge formation. A digital image of an object substrate is attained through microscopic observation thereof, the attained digital image is examined to detect defects, while masking a region pre-registered in terms of coordinates, or while masking a pattern meeting a pre-registered pattern, and an image of each of the defects thus detected is displayed. Further, each of the defects detected using the digital image attained through microscopic observation is checked to determine whether its feature meets a pre-registered feature or not. Defects having a feature that meets the pre-registered feature are so displayed that they can be turned on/off, or they are so displayed as to be distinguishable from the other defects.
Abstract:
The invention relates to a particle-optical apparatus with a predetermined final vacuum pressure. To that end a vacuum chamber of said apparatus is via a first restriction connected to a volume where vapour or gas is present at a known pressure and via a second restriction to a vacuum pump. By making the ratio of the two conductances, associated with said restrictions, a calibrated ratio, the final pressure of the vacuum chamber is a predetermined final pressure. This eliminates the need for e.g. vacuum gauges and control systems, resulting in a more compact design of such apparatus.
Abstract:
A method and a device for determining the distance from the sample to be examined to at least one reference point which function independently of the type of sample. A signal is modulated to a first potential of a sample and a primary particle beam is directed at the sample, resulting in a secondary particle beam being formed by an interaction, the particles of this beam having the modulated signal. The particles of the secondary particle beam and the signal modulated to the potential of the particles of the secondary particle beam are detected. By comparing the detected modulated signal to a reference signal, the distance is determined from the relationship between the reference signal and the detected modulated signal. The device has the corresponding components for implementing the method.
Abstract:
A SEM sample container having a sample enclosure (100, 102) including an electron beam permeable, fluid permeable membrane (132), and a peripheral enclosure sealed to the membrane, and a sample enclosure closure including a quick-connect attachment (152) for sealing engagement with the sample enclosure.
Abstract:
There is disclosed a charged-particle beam system equipped with a higher-order aberration corrector capable of correcting fifth-order spherical aberration and third-order chromatic aberration such that the primary trajectory of an electron beam is not affected by the strength of a transfer lens. The corrector is so adjusted that the image point of the corrector is located at a position shifted a distance of L0 from the principal plane of an objective lens toward the electron source. The transfer lens is so disposed that the position of the principal plane is coincident with the image point of the corrector. Therefore, the primary trajectory of the electron beam passes through the center of the transfer lens. Consequently, the primary trajectory is not affected by the strength of the transfer lens.
Abstract:
When a sample is cut to update an observed section, an electron beam is focused on the observed section. An apparatus of the invention includes an ion gun 102 which irradiates an ion beam onto a sample 200 to form an observed section 202, an electron gun 104 which irradiates an electron beam EB onto the observed section 202 formed by the ion gun 102, a focal point adjusting unit 106 which adjusts a relationship between the observed section 202 and a focal point of the electron beam EB, and a focal point control unit 108 which controls the focal point adjusting unit 106 on the basis of an amount of cut of the sample 200 obtained by irradiation of the ion beam IB obtained by the ion gun 102.
Abstract:
A structure of an electron beam apparatus having shielding properties for shielding against an environmental magnetic field is provided. The electron beam apparatus comprises a mirror barrel for housing a magnetic lens for converging an electron beam onto a specimen and a specimen chamber for housing the specimen, wherein a non-magnetic material having conductivity is used as a material for at least one of the mirror barrel and a main body of the specimen chamber. The material for the mirror barrel or the main body of the specimen chamber is an aluminum alloy and a thickness of a sidewall of the mirror barrel or the main body of the specimen chamber is 10 mm or more. A magnetic plate having a thickness smaller than that of the sidewall of the mirror barrel or the main body of the specimen chamber is provided on an inner sidewall of the mirror barrel or the main body of the specimen chamber.
Abstract:
An apparatus for performing automated in-situ lift-out of a sample from a specimen includes a computer having a memory with computer-readable instructions, a stage for a specimen and a nano-manipulator. The stage and the nano-manipulator are controlled by motion controllers connected to the computer. The nano-manipulator has a probe tip for attachment to samples excised from the specimen. The computer-readable instructions include instructions to cause the stage motion controllers and the nano-manipulator motion controllers, as well as an ion-beam source, to automatically perform in-situ lift-out of a sample from the specimen.
Abstract:
A structure of an electron beam apparatus having shielding properties for shielding against an environmental magnetic field is provided. The electron beam apparatus comprises a mirror barrel for housing a magnetic lens for converging an electron beam onto a specimen and a specimen chamber for housing the specimen, wherein a non-magnetic material having conductivity is used as a material for at least one of the mirror barrel and a main body of the specimen chamber. The material for the mirror barrel or the main body of the specimen chamber is an aluminum alloy and a thickness of a sidewall of the mirror barrel or the main body of the specimen chamber is 10 mm or more. A magnetic plate having a thickness smaller than that of the sidewall of the mirror barrel or the main body of the specimen chamber is provided on an inner sidewall of the mirror barrel or the main body of the specimen chamber.