Abstract:
A circuit board according to the present invention is so formed that an extension pattern not covered with an insulating film is provided at a NC land that does not allow an electric signal to pass therethrough, so as to have a configuration equivalent to that of a pattern not covered with the sulating film and provided at a land that allows the electric signal to pass therethrough. Accordingly, the NC land may have an exposed surface area equivalent to that of the land. Therefore, when a semiconductor component is soldered using solders, bumps of the solders at the NC land and at the land may be evenly formed, thereby providing coplanarity of the solders, and increasing soldering reliability for the semiconductor component.
Abstract:
A light emitting diode (LED) assembly with a vented printed circuit board is disclosed. A printed circuit board assembly may include a plurality of LED modules disposed in an array with a multilayered substrate and a plurality of vents. The multilayer substrate may include a thermal cooling layer which is in thermal communication with the LED modules for heat dissipation. The multilayer substrate may include one or more electrical power layers in electrical communication with the LED modules for energizing the LEDs. The multilayered substrate may have an external insulating layer that includes a plurality of fluid apertures configured for fluid communication with the thermal cooling layer.
Abstract:
A printed circuit board is by formed by laminating an interlaminar insulating layer on a conductor circuit of a substrate, in which the conductor circuit is comprised of an electroless plated film and an electrolytic plated film and a roughened layer is formed on at least a part of the surface of the conductor circuit.
Abstract:
A printed circuit board is by formed by laminating an interlaminar insulating layer on a conductor circuit of a substrate, in which the conductor circuit is comprised of an electroless plated film and an electrolytic plated film and a roughened layer is formed on at least a part of the surface of the conductor circuit.
Abstract:
A printed circuit board is by formed by laminating an interlaminar insulating layer on a conductor circuit of a substrate, in which the conductor circuit is comprised of an electroless plated film and an electrolytic plated film and a roughened layer is formed on at least a part of the surface of the conductor circuit.
Abstract:
To provide a mounting substrate that requires a reduced amount of solder and reduces a thermal effect of solder on the interior of an electronic component, and a microphone to be mounted on the substrate. A mounting substrate according to the present invention includes: a solder part formed on a part of an electrode formed on the mounting substrate; a resist film formed to prevent the solder of the solder part from flowing out of a predetermined range; and a gas-escape groove that is constituted by the absence of the electrode and the resist film and allows gas produced during soldering to escape. In the case where a component having a central terminal and a peripheral terminal is mounted on the mounting substrate, each part of the mounting substrate has the characteristics described below. That is, the electrode formed on the mounting substrate includes a central electrode part that faces the central terminal, a plurality of outer electrode parts that face part of the peripheral terminal, and a linkage electrode part that interconnects the outer electrode parts. The solder part is formed on each of the central electrode part and the outer electrode parts. The gas-escape groove is configured to allow the gas inside the peripheral terminal to escape to the outside.
Abstract:
A circuit carrier and a package structure thereof are provided. The circuit carrier comprises a substrate having a surface, a plurality of passive component electrode pads or a plurality of passive component electrode planes on the surface of the substrate for electrically connecting a passive component corresponding to the plurality of passive component electrode pads, and a solder mask layer covering the surface of the substrate and including at least a solder mask opening, that entirely exposing the passive component electrode pads or a portion of the surface of each the passive component electrode plane corresponding to the passive component. Because there is no solder mask layer between the bottom of the passive component and the substrate, the gap between the passive component and the substrate will become wider. Hence, remaining flux can be entirely removed in order to increase the yield rate of the subsequent high temperature process.
Abstract:
A solder mask for flip chip interconnection has a common opening that spans a plurality of circuit elements. The solder mask allows confinement of the solder during the remelt stage of interconnection, yet it is within common design rules for solder mask patterning. Also, a substrate for flip chip interconnection includes a substrate having the common opening that spans a plurality of circuit elements. Also, a flip chip package includes a substrate having a common opening that spans a plurality of circuit elements.
Abstract:
A printed wiring board includes a substrate (20) on which a wiring pattern (12) has been formed, and a fuse (6) provided on the substrate (20). One end of the fuse (6) is directly connected to a first pad (12a) of the wiring pattern (12), and the other end of the fuse (6) is directly connected to a second pad (12b) of the wiring pattern (12). The fuse (6) is covered by a protective material (7).
Abstract:
In one embodiment, a pad is formed on a substrate surface. The pad is connected with a connecting pattern. A first mask is formed on the substrate. The first mask has a first opening exposing at least a portion of the pad and a portion of the connecting pattern. A second mask is formed on the first mask. The second mask has a second opening exposing at least a portion of the pad and a portion of the connecting pattern. A boundary surface or sidewall of the first opening is not coplanar with a boundary surface or sidewall of the second opening. Therefore, stresses may be prevented from concentrating on the boundary surface of the first opening, thereby allowing dispersion of the stresses and restraining pattern cracks.