Abstract:
A semiconductor device is of a PoP structure such that first electrode portions provided on a first device mounting board constituting a first semiconductor module and second electrode portions provided in a second semiconductor module are joined together by solder balls. A first insulating layer having an opening is provided on one main surface of an insulating resin layer which is a substrate, and an electrode portion, whose top portion protrudes above the top surface of the first insulating layer, is formed in the opening. A second insulating layer is provided on top of the first insulating layer in the periphery of the top portion of the first electrode portion; the second insulting layer is located slightly apart from the top portion of the first electrode portion. The first electrode portion is shaped such that the top portion is formed by a curved surface or formed by a curved surface and a plane surface smoothly connected to the curved surface.
Abstract:
A packaging substrate includes: a substrate having a core layer, a cavity penetrating the core layer and circuit layers formed on surfaces of the core layer; a first capacitor disposed in the cavity; a bonding layer formed on the first capacitor in the cavity of the substrate; a second capacitor disposed on the bonding layer so as to be received in the cavity; and a dielectric layer formed on the substrate and in the cavity for covering the first and second capacitors. By stacking the first and second capacitors in the cavity through the bonding layer, the single core layer is embedded with two layers of the capacitors to thereby meet the multi-function requirement.
Abstract:
An interposer substrate includes an array of interconnects in the interposer substrate, the array of connectors arranged in accordance with an array of interconnects for a processor on a circuit substrate, at least one conductive trace in the interposer substrate in connection with at least one connector in the array of interconnects, the conductive trace arranged parallel to the interposer substrate such that no electrical connection exists between the connector in the interposer substrate and a corresponding one of the interconnects for the processor on the circuit substrate, and at least one peripheral circuit residing on the interposer substrate in electrical connection with the conductive trace.
Abstract:
A sensing unit package with reduced size and improved thermal sensing capabilities. An exemplary package includes a printed circuit board with a plurality of electrical traces, an application-specific integrated circuit (Analog ASIC) chip, and a micromachined sensor formed on a microelectromechanical system (MEMS) die. The Analog ASIC chip is electrically and mechanically attached to the printed circuit board. The MEMS die is in direct electrical communication with only a portion of the electrical traces of the printed circuit board and is mechanically and thermally attached directly to the Analog ASIC chip. A thermally conducting compound is located between the MEMS die and the Analog ASIC chip. One or more solder balls electrically attach the Analog ASIC chip to the printed circuit board and one or more solder traces electrically attach the MEMS die to the printed circuit board.
Abstract:
An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB. The main advantages of this invention are to use the packaged chip for interconnection and the conventional PCB technology can be used for low speed electrical signal connection. Also, the part of the heat from the packaged chip can be transmitted to the PCB through the conductors, so that complex cooling system can be avoided.
Abstract:
A multilayer module comprised of stacked IC package layers is disclosed. A plurality of layers preferably having ball grid array I/O are stacked and interconnected using one or more interposer layers for the routing of electronic signals to appropriate locations in the module through angularly depending leads. The stack is further comprised of an interface PCB for the routing of electronics signals to and from the layers in the module and for connection to an external circuit.
Abstract:
An interposer substrate includes an array of interconnects in the interposer substrate, the array of connectors arranged in accordance with an array of interconnects for a processor on a circuit substrate, at least one conductive trace in the interposer substrate in connection with at least one connector in the array of interconnects, the conductive trace arranged parallel to the interposer substrate such that no electrical connection exists between the connector in the interposer substrate and a corresponding one of the interconnects for the processor on the circuit substrate, and at least one peripheral circuit residing on the interposer substrate in electrical connection with the conductive trace.
Abstract:
A capacitor device mountable on a plane of a substrate includes an electrically conductive bottom plate adapted to be mounted substantially parallel to, and in electrical contact at the plane of the substrate and a first multilayer capacitor having substantially parallel first and second electrode plates oriented substantially perpendicular to the bottom plate with the first electrode plates being electrically connected to the bottom plate. An electrically conductive top lead frame overlaps with, and is electrically isolated from, the bottom plate. The top lead frame electrically connected to the second electrode plates and adapted to be electrically connected at the plane of the substrate. The bottom lead frame may have a corrugated shape, where the corrugated shape provides compliance between the first multilayer capacitor and the substrate. A portion of the top lead frame may contact at least a portion of a side of the first multilayer capacitor.
Abstract:
A capacitor includes a main body, a first seat, and a second seat. The main body includes a first end surface and a second end surface opposite to the first end surface. Two first pins extend upward from the first end surface. Two second pins extend downward from the second end surface. The first pins electrically connect the second pins. The first seat includes a first substrate and two first pads, the first seat is positioned on the second end surface of the main body and the first pads are electrically connected to the second pins. The second seat includes a second substrate and two second pads, the second seat is positioned on the first end surface of the main body and the second pads are electrically connected to the first pins.