Abstract:
According to one embodiment, an electronic device includes, a conductive housing, a substrate, a flexible substrate, a reinforcing element, and a conductor. The substrate is configured to be housed in the housing and is mounted with an electronic component. The flexible substrate includes a conductive signal layer stacked on a flexible insulating base material and electrically connected to the substrate, a cover layer covering the signal layer, a first surface mounted with the substrate, and a second surface on the reverse side of the first surface, having a portion where the signal layer is partially exposed. The reinforcing element is provided on the second surface to reinforce the flexible substrate and has an opening corresponding to the portion where the signal layer is partially exposed. The conductor is inserted from the opening of the reinforcing element and connects the signal layer to the housing.
Abstract:
An anti-deformation structure is formed on the surface of a flexible plate-shaped part. The anti-deformation structure includes protrusions and depressions formed on the surface of the plate-shaped part. The protrusions and depressions has a shape in which adjacent protrusions become in contact with each other in the state when the plate-shaped part is deformed within a range of elastic deformation, restricting further greater deformation, and thus, preventing excessive deformation leading to permanent deformation and raising the resistance to the stress. The flexible base material can be applied to flexible image-displaying devices.
Abstract:
A flexible printed board includes a base material, first conductive pads arranged along an imaginary line on the base material and extending with a first width from front end to rear end on a front side of the imaginary line, second conductive pads arranged along the imaginary line and extending with a second width from front end on a rear side of the imaginary line to rear end, first wiring patterns provided between the second conductive pads, and extending with a third width to front end connected to the rear ends of the first conductive pads, and a reinforcing layer for reinforcing a reinforcing area over the first conductive pads and the first wiring patterns, and having a front edge on a front side of rear ends of the first conductive pads and a rear edge on a rear side of the rear ends of the second conductive pads.
Abstract:
A circuit board assembly includes a circuit board with two heat dissipating assemblies mounted thereon and an L-shaped back plate attached to an underside of the circuit board. Each of the heat dissipating assembly includes at least a pair of securing members at opposite corners thereof. The back plate includes a first portion and a second portion each defining at least a pair of circular protrusions corresponding to the securing members of the heat dissipating assemblies.
Abstract:
An assembly structure of flexible board and rigid board includes a rigid board, a sub-board and a flexible board. The rigid board defines a locking gap having two side surfaces projecting toward each other to form two resisting portions. The sub-board has a standing portion inserted in the locking gap. Bilateral sides of the standing portion extend outward to form two preventing arms against a bottom surface of the rigid board. The flexible board has a base portion inserted in the locking gap of the rigid board. The base portion has a front surface and a back surface located to a front surface of the sub-board. The front surface of the base portion is against the resisting portions.
Abstract:
This invention is directed to a support plate for reinforcing a portion of a circuit board. The support plate may be coupled to a portion of the circuit board that is subject to forces (e.g., portions of the circuit board having switches) to prevent flexing of the board. The support plate may be coupled to the circuit board. This invention is also directed to a switch constructed from a button, a label plate, and a backer plate. The label plate and the backer plate may include apertures operative to receive a protrusion extending from the button, where the protrusion is welded to the backer plate. Labels may be printed or attached to the bottom surface of the label plate to protect the labels. In some embodiments, the protrusion may be welded to the backer plate. The protrusion may be operative to engage an electrical switch of an electronic device in which the switch is placed.
Abstract:
A method for manufacturing an electronic part, including: cutting a wiring substrate, which contains a base substrate, a wiring pattern provided on a first surface of the base substrate, and a reinforcing member provided on a second surface of the base substrate, along a line intersecting with an outer circumference of the reinforcing member; wherein a wire, out of a plurality of wires composing the wiring pattern, arranged closest to an intersecting point of the outer circumference of the reinforcing member and the line has a widest width.
Abstract:
According to one embodiment, an electronic device includes a housing, a circuit board in the housing, a plurality of surface-mountable electronic components, and a reinforcing frame. The circuit board has a first surface and a second surface on a reverse side of the first surface. The surface-mountable electronic components, each having a surface on which bumps are arranged, are mounted on the first surface via the bumps. The reinforcing frame is arranged on the second surface such that it passes through portions corresponding to positions of bumps located at at least four corners of the bumps arranged on the surface of each of the surface-mountable electronic components mounted on the first surface.
Abstract:
A printed circuit board includes an insulating layer, a copper layer formed on the insulating layer and a reinforcing layer formed on the copper layer at opposite sides of the given portion. The copper layer includes a plurality of electrical traces at a given portion thereof. A thickness of the reinforcing layer increases in a direction away from the given portion. A method for manufacturing the printed circuit board is also provided in this disclosure.
Abstract:
A flexible printed circuitboard structure is disclosed, which comprises: a flexible printed circuitboard (FPC), having at least a soldering pad and at least a solder pasted pad area formed thereon; wherein, by using the extending of a side of the at least one solder pasted pad area as the base line, a bending line is formed on the FPC in a manner that it is prevented from passing through the at least one soldering pad and is disposed at a specific distance away from the periphery of the same. By the configuration of the solder pasted pad area to defined the bending line on the FPC, the bending stress problems caused when the FPC is being bended, such as solder crack and broken circuit, etc., can be prevented.