Abstract:
A high resolution scanning electron microscope collects secondary Auger electrons through its objective lens to sensitively determine the chemical make-up with extremely fine positional resolution. The system uses a magnetic high resolution objective lens, such as a snorkel lens or a dual pole magnetic lens which provides an outstanding primary electron beam performance. The Auger electrons are deflected from the path of the primary beam by a transfer spherical capacitor. The primary beam is shielded, by a tube or plates, as it traverses the spherical capacitor to prevent aberration of the primary beam and the external wall of the shield maintains a potential gradient related to that of the spherical capacitor to reduce aberration of the primary electron beam. The coaxial configuration of the primary electron beam and the collected secondary electron beam allows the Auger image to coincide with the SEM view.
Abstract:
An improved microcalorimeter-type energy dispersive x-ray spectrometer provides sufficient energy resolution and throughput for practical high spatial resolution x-ray mapping of a sample at low electron beam energies. When used with a dual beam system that provides the capability to etch a layer from the sample, the system can be used for three-dimensional x-ray mapping. A preferred system uses an x-ray optic having a wide-angle opening to increase the fraction of x-rays leaving the sample that impinge on the detector and multiple detectors to avoid pulse pile up.
Abstract:
An electron beam source for use in an electron gun. The electron beam source includes an emitter terminating in a tip. The emitter is configured to generate an electron beam. The electron beam source further includes a suppressor electrode laterally surrounding the emitter such that the tip of the emitter protrudes through the suppressor electrode and an extractor electrode disposed adjacent the tip of the emitter. The extractor electrode comprises a magnetic disk whose magnetic field is aligned with an axis of the electron beam.
Abstract:
A system including co-axial focused ion beam and an electron beam allows for accurate processing with the FIB using images formed by the electron beam. In one embodiment, a deflector deflects the electron beam onto the axis of the ion beam and deflects secondary particles collected through the final lens toward a detector. In one embodiment, a positively biased final electrostatic lens focuses both beams using the same voltage to allow simultaneous or alternating FIB and SEM operation. In one embodiment, the landing energy of the electrons can be varied without changing the working distance.
Abstract:
An improved microcalorimeter-type energy dispersive x-ray spectrometer provides sufficient energy resolution and throughput for practical high spatial resolution x-ray mapping of a sample at low electron beam energies. When used with a dual beam system that provides the capability to etch a layer from the sample, the system can be used for three-dimensional x-ray mapping. A preferred system uses an x-ray optic having a wide-angle opening to increase the fraction of x-rays leaving the sample that impinge on the detector and multiple detectors to avoid pulse pile up.
Abstract:
A milling device is disclosed for the preparation of microscopy specimens or other surface science applications through the use of ion bombardment. The device provides the ability to utilize both gross and fine modification of the specimen surface through the use of high and low energy ion sources. Precise control of the location of the specimen within the impingement beams created by the ion sources provides the ability to tilt and rotate the specimen with respect thereto. Locational control also permits the translocation of the specimen between the various sources under programmatic control and under consistent vacuum conditions. A load lock mechanism is also provided to permit the introduction of specimens into the device without loss of vacuum and with the ability to return the specimen to ambient temperature during such load and unload operation. The specimen may be observed and imaged during all active phases of operation.
Abstract:
A milling device is disclosed for the preparation of microscopy specimens or other surface science applications through the use of ion bombardment. The device provides the ability to utilize both gross and fine modification of the specimen surface through the use of high and low energy ion sources. Precise control of the location of the specimen within the impingement beams created by the ion sources provides the ability to tilt and rotate the specimen with respect thereto. Locational control also permits the translocation of the specimen between the various sources under programmatic control and under consistent vacuum conditions. A load lock mechanism is also provided to permit the introduction of specimens into the device without loss of vacuum and with the ability to return the specimen to ambient temperature during such load and unload operation. The specimen may be observed and imaged during all active phases of operation.