Abstract:
A port arrangement is configured for accessing a demountable component in an interior of an apparatus or container. The port arrangement includes an inner port having a port tube and forming a releasable connection with an internal component. The port tube of the inner port is guided through an outer port that is to an outer jacket.
Abstract:
A method for depositing metal lines for semiconductor devices, in accordance with the present invention includes the steps of providing a semiconductor wafer including a dielectric layer formed on the wafer, the dielectric layer having vias formed therein and placing the wafer in a deposition chamber. The method further includes depositing a metal on the wafer to fill the vias wherein the metal depositing is initiated when the wafer is at a first temperature and the depositing is continued while heating the wafer to a target temperature which is greater than the first temperature.
Abstract:
A method for forming a multi-level conductive structure on an integrated circuit. The method includes forming a first conductive layer 108 and forming a first dielectric layer 112 above the first conductive layer. The method further includes forming a second conductive layer 302 above the first dielectric layer. There is also included etching through the second conductive layer and at least partially into the first dielectric layer to form a trench 706 in the second conductive layer and the first dielectric layer, thereby removing at least a portion of the dielectric layer and forming a first conductive line 503 and a second conductive line 505 in the second conductive layer. Further, the method includes depositing a low capacitance material 908 into the trench. The low capacitance material represents a material having a dielectric constant lower than a dielectric constant of the first dielectric layer.
Abstract:
A method for forming a microstructure includes photolithographically forming a vertically extending post on a portion of a surface of a substrate to provide a first structure. A flowable, sacrificial material is deposited over a surface of the first structure. The flowable, sacrificial materially flows off the top surface and sidewall portions of the post onto adjacent portions of the surface of the substrate to provide a second structure. A non-sacrificial material is deposited over a surface of the second structure. The non-sacrificial material is deposited to conform to the surface of the second structure. The non-sacrificial is deposited over the sacrificial material, over the sidewall portions and over the top surface of the post. The deposited sacrificial material is selectively removed while the non-sacrificial material remains to form a third structure with a horizontal member provided by the non-sacrificial material. The horizontal member is supported a predetermined distance above the surface of the substrate by a lower portion of the post. The flowable material is a flowable oxide, for example, hydrogensilsesquioxane glass, and the post has a width less than 20 .mu.m. The resulting structure, formed with a single photolithographic step, is used for supporting a capacitor deposited over it. The capacitor is formed as a sequence of deposition steps; i.e., depositing a first conductive layer over a surface of the support structure; depositing a dielectric layer over the conductive layer; and depositing a second conductive layer over the dielectric layer.
Abstract:
A method for forming a plurality of electrically conductive wires on a substrate. The method includes forming a relatively non-planar metal layer over a surface of the substrate. A self-planarizing material is deposited over the metal layer. The self-planarizing material forms a planarization layer over the surface of the metal layer. The planarization layer has a surface relatively planar compared to the relatively non-planar metal layer. A photoresist layer is deposited over the surface of the planarization layer. The photoresist layer is patterned with a plurality of grooves to form a mask with such grooves exposing underling portions of the planarization layer. The photoresist mask is used as a mask to etch grooves in the exposed portions of the planarization layer and thereby form a second mask. The second mask exposes underling portions of the relatively non-planar metal layer. The second mask is used to etch grooves in the relatively non-planar conductive metal layer and thereby form the plurality of electrically conductive wires in the metal layer. The wires are separated from each other by the grooves formed in the relatively non-planar metal layer. The planarization layer is formed by a spinning-on an organic polymer, for example an organic polymer having silicon, or a flowable oxide, or a hydrogensilsequioxane, or divinyl-siloxane-benzocyclobutene. The metal layer is etched using reactive ion etching. The planarization layer is removed using a wet chemical etch.
Abstract:
A multi-level integrated circuit metalization system having a composite dielectric layer comprising a layer 22 of diamond or sapphire. A plurality of patterned metalization layers is disposed over a semiconductor substrate 10. A composite dielectric layer is disposed between a pair of the metalization layers. The composite dielectric layer 22 comprises a layer of diamond or sapphire. The diamond or sapphire layer has disposed on a surface thereof one of the patterned metalization layers. A conductive via 34 passes through the composite layer. One end of the conductive via is in contact with diamond or sapphire layer. The diamond or sapphire layer conducts heat laterally along from the metalization layer disposed thereon to a heat sink provided by the conductive via. The patterned diamond or sapphire layer provides a mask during the second metalization deposition. Thus, the leads of the next metalization layer will be deposited directly on the diamond or sapphire layer which will serve as an etch stop during the metal etching process.
Abstract:
A method for planarizing a semiconductor structure having a first surface region with a high aspect ratio topography and a second surface region with a low aspect ratio topography. A flowable material is deposited over the first and second surface regions of the structure. A portion of the material fills gaps in the high aspect ratio topography to form a substantially planar surface over the high aspect ratio topography. A doped layer, for example phosphorus doped glass, is formed over the flowable oxide material. The doped layer is disposed over the high aspect ratio and over the low aspect ratio regions. Upper surface portions over the low aspect ratio region are higher than an upper surface of the flowable material. The upper portion of the doped layer is removed over both the first and second surface portions to form a layer with a substantially planar surface above both the high aspect ratio region and the low aspect ratio region. The method is used for filling gaps, such as gaps between adjacent gate electrodes formed in a gate electrode surface region of a semiconductor structure.
Abstract:
Apparatus and method are provided for obtaining improved measurement and control of the temperature of a semiconductor wafer (W) during processing. The apparatus includes a chuck for holding a wafer during processing, a coolant gas supply (16), and a temperature sensing arrangement for measuring and controlling the temperature of the wafer during processing. A top face of the chuck (22) over which the wafer is positioned, is configured with a plurality of holes (34) into which the coolant gas, such as helium, is admitted at controlled rate and pressure. The coolant gas passes through a narrow space (36) between the top face of the chuck and the underside of the wafer and is evacuated via an exhaust line (30) after being heated to (or nearly to) the temperature of the wafer. Temperature of the now-heated coolant gas is continuously measured by a temperature sensor arrangement which generates a signal controlling the pressure and flow of coolant gas to the wafer. Close control of the temperature of the wafer is thereby maintained continuously at a desired value during processing.
Abstract:
A method for fabricating an electrically blowable fuse on a semiconductor substrate. The method includes forming a fuse portion 102 on the semiconductor substrate. The fuse portion is configured to turn substantially non-conductive when a current exceeding a predefined current level passes through the fuse portion. The method also includes depositing a substantially conformal first layer 302 of dielectric material above the fuse portion and depositing a second layer 304 of dielectric material above the first layer, thereby forming a protrusion of dielectric material above the fuse portion. The second layer being different from the first layer. The method further includes performing chemical-mechanical polish on the protrusion to form an opening through the second layer above the protrusion. There is also included etching, in a substantially isotropic manner, a portion of the first layer through the opening to form a microcavity 502 about the fuse portion. The etching is substantially selective to the second layer and the fuse portion. Additionally, there is included depositing a substantially conformal third layer 606 of dielectric material above the second layer, thereby closing the opening in the second layer.
Abstract:
A port arrangement is configured for accessing a demountable component in an interior of an apparatus or container. The port arrangement includes an inner port having a port tube and forming a releasable connection with an internal component. The port tube of the inner port is guided through an outer port that is to an outer jacket.