Abstract:
An ultra-thin package structure for an integrated circuit having sensing functions is disclosed. It includes: a first substrate layer, having a first top side and a first bottom side, wherein a plurality of conductive traces are formed on the first top side and the first bottom side; an integrated circuit, having at least one gold-plated die pad on the top side thereof, wherein the at least one gold-plated die pad is connected to the corresponding conductive trace on the first bottom side of the first substrate layer by SMT; a second substrate layer, having a second top side and a second bottom side, wherein a plurality of conductive traces are formed on the second bottom side, and some portions of the conductive traces are covered by solder mask while other portions are exposed externally; and a filling material layer, formed between the first and the second substrate layer with the integrated circuit therebetween.
Abstract:
A capacitive fingerprint sensor which includes capacitive sensing units is disclosed. Each of the capacitive sensing unit includes a sensing electrode; a first switch; a voltage follower; and a reference capacitor. The voltage follower includes an adjustable current source, for providing at least two distinct current levels; and a MOS transistor. The MOS transistor includes a source node, connected to ground via the adjustable current source and serves as an output node of the voltage follower; a gate node, connected to the sensing electrode and serves as an input node of the voltage follower; a drain node, connected to a power source, for providing power to the voltage follower; and a bulk node, connected to the source node.
Abstract:
A printed circuit board having an electronic component embedded is disclosed. The printed circuit board has four electrically conductive layers and three core layers formed interleavedly. By properly removing a portion of the printed circuit board, the electronic component can be exposed. It has advantages that the exposed electronic component can be a CCD, CMOS or module. When the devices mentioned are embedded in the printed circuit board, one part of them can be exposed from the printed circuit board for normal functions. The overall thickness of the printed circuit board assembly can be minimized to meet the trend of compact design of electronic products.
Abstract:
A Printed Circuit Board Assembly (PCBA) forming an enhanced fingerprint module is disclosed. The PCBA includes a Printed Circuit Board (PCB), an image sensing chip, at least one electrode and a protection layer. An opening in a first insulation layer and a second insulation layer of the PCB together form a sensor portion so that the image sensing chip can be packaged in the opening. Thus, the thickness of the enhanced fingerprint module can be thinner than other fingerprint modules provided by the conventional package methods.
Abstract:
A method for mounting a chip on a printed circuit board (PCB) is disclosed. The method includes the steps of: providing a chip having a plurality of bonding pads and a PCB having a recess portion and a plurality of connectors; gluing the recess portion; placing the chip into the recess portion; and forming circuit patterns linking associated bonding pad and connector. A bottom of the recess portion is substantially flat and a shape of the recess portion is similar to that of the chip but large enough so that the chip can be fixed in the recess portion after being glued.
Abstract:
A multi-function identification system is described in the present invention. The system includes an appliance and a number of keys. Under a registration process, the system allows multiple appliances to be controlled by a single key or an appliance can be controlled by different keys. The system can also allow users to set specified actions to be conducted after identification processes are completed. That satisfies requirements of a multi-function identification. Meanwhile, the key is a plug-and play and on-the-go product. It is desired that the key is a host used for other purpose.
Abstract:
A compound and securable key is disclosed in the present invention. It includes a printed circuit board, a fingerprint sensor, a micro control unit, and a housing. The present invention provides a key structure with combination of a physical key patterns and biometrics for identification. The key is convenient to carry, difficult to duplicate. It is also has advantages such as low cost, easy use, and compact size of biometric module. The invention enhances security of keys.
Abstract:
A biometric security device for digital key storing is disclosed. The biometric security device includes a biometric information fetching module and a processing module. The processing module has a nonvolatile storage unit and a processing unit. The nonvolatile storage unit includes a secure storage unit and a general storage unit. The biometric security device with a secure electronic key designed for storing secret data utilizes both TrustZone™ technology (or similar technology) and biometric authentication. Thus, it can provide the flexibility for multiple users or applications to use the biometric security device or any equipment the biometric security device mounted in without compromising the safeguard of the data stored therein.
Abstract:
A silicon wafer having colored top side is disclosed in the present invention. The silicon wafer includes: a wafer; a first semi-conductor layer, formed on at least a portion of a top side of the wafer, having periodical structures to form a grating pattern, and a second semi-conductor layer, formed on the first semi-conductor layer with a bottom side substantially fully contacted with the periodical structures. The first semi-conductor layer and the second semi-conductor layer form a photonic crystal layer and work to reflect a predetermined wavelength range of incident visible light beams. The present invention provides a silicon wafer which can reflect specified color(s) from the surface facing external light beams. Therefore, dies from cutting the silicon wafer with functions to interact with external environment rather than packaged can have advantages to show some specified logo or trademark.
Abstract:
A Printed Circuit Board Assembly (PCBA) for forming an enhanced biometric module and a method for manufacturing the PCBA are disclosed. The method includes the steps of providing a PCB, a biometric sensing chip and SMDs; mounting the biometric sensing chip on the PCB with each bonding pad being electrically linked to one corresponding first contact pad; mounting the SMDs on second contact pads which are electrically linked thereto, respectively; and forming a protection layer. The present invention takes advantages of compact size of small conductive elements to avoid cracks in the protection layer.