Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A thin-film flip-chip light emitting diode (LED) having a roughened surface and a method for manufacturing the same are provided. First, a substrate having a patterned structure on a surface of the substrate is provided, and the surface is roughened. A first semiconductor layer is then formed on the surface; a light emitting structure layer is then formed on the first semiconductor layer; a second semiconductor layer is then formed on the light emitting structure layer. The first and second semiconductor layers possess opposite electrical characteristics. A first contact electrode and a second contact electrode are then formed on the first semiconductor layer and the second semiconductor layer, respectively. Finally, a sub-mount is formed on the first and second contact electrodes, and the substrate is removed to form the thin-film flip-chip LED having the roughened surface. Here, the light emitting efficiency of the thin-film flip-chip LED is improved.
Abstract:
A thin-film flip-chip light emitting diode (LED) having a roughened surface and a method for manufacturing the same are provided. First, a substrate having a patterned structure on a surface of the substrate is provided, and the surface is roughened. A first semiconductor layer is then formed on the surface; a light emitting structure layer is then formed on the first semiconductor layer; a second semiconductor layer is then formed on the light emitting structure layer. The first and second semiconductor layers possess opposite electrical characteristics. A first contact electrode and a second contact electrode are then formed on the first semiconductor layer and the second semiconductor layer, respectively. Finally, a sub-mount is formed on the first and second contact electrodes, and the substrate is removed to form the thin-film flip-chip LED having the roughened surface. Here, the light emitting efficiency of the thin-film flip-chip LED is improved.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
Abstract:
A thin-film flip-chip light emitting diode (LED) having a roughened surface and a method for manufacturing the same are provided. First, a substrate having a patterned structure on a surface of the substrate is provided, and the surface is roughened. A first semiconductor layer is then formed on the surface; a light emitting structure layer is then formed on the first semiconductor layer; a second semiconductor layer is then formed on the light emitting structure layer. The first and second semiconductor layers possess opposite electrical characteristics. A first contact electrode and a second contact electrode are then formed on the first semiconductor layer and the second semiconductor layer, respectively. Finally, a sub-mount is formed on the first and second contact electrodes, and the substrate is removed to form the thin-film flip-chip LED having the roughened surface. Here, the light emitting efficiency of the thin-film flip-chip LED is improved.
Abstract:
A light emitting unit includes multiple light emitting dice, a molding compound, a substrate and a patterned metal layer. Each of the light emitting dice includes a light emitting component, a first electrode and a second electrode. The molding compound encapsulates the light emitting dice and exposes a first surface of the first electrode and a second surface of the second electrode of each of the light emitting dice. The molding compound is located between the substrate and the light emitting dice. The patterned metal layer is disposed on the first surface of the first electrode and the second surface of the second electrode of each of the light emitting dice. The light emitting dice are electrically connected to each other in a series connection, a parallel connection or a series-parallel connection by the patterned metal layer.
Abstract:
A light-emitting device including a light-emitting unit, an electrode unit, and an insulating unit is provided. The light-emitting unit includes an illuminator and a packaging sealant. The illuminator generates an optical energy by way of electroluminescence, and the packaging sealant is formed on a part of a surface of the illuminator. The electrode unit includes a first electrode and a second electrode respectively formed on the surface of the illuminator on which no packaging sealant is formed. The insulating unit is formed on the surface of the light-emitting unit and includes a first insulating layer protruded between the first electrode and the second electrode. When the light-emitting device of the invention is electrically connected to an external circuit board using solder, the insulating unit effectively separates the elements to avoid the elements being short-circuited by the solder overflowing.
Abstract:
A thin-film flip-chip light emitting diode (LED) having a roughened surface and a method for manufacturing the same are provided. First, a substrate having a patterned structure on a surface of the substrate is provided, and the surface is roughened. A first semiconductor layer is then formed on the surface; a light emitting structure layer is then formed on the first semiconductor layer; a second semiconductor layer is then formed on the light emitting structure layer. The first and second semiconductor layers possess opposite electrical characteristics. A first contact electrode and a second contact electrode are then formed on the first semiconductor layer and the second semiconductor layer, respectively. Finally, a sub-mount is formed on the first and second contact electrodes, and the substrate is removed to form the thin-film flip-chip LED having the roughened surface. Here, the light emitting efficiency of the thin-film flip-chip LED is improved.