Abstract:
An ion beam processing apparatus includes an ion beam irradiation optical system that irradiates a rectangular ion beam to a sample on a first sample stage, an electron beam irradiation optical system that irradiates an electron beam to the sample, and a second sample stage to hold a test piece, extracted from the sample. The ion beam can be tilted by rotating the second sample stage about a tilting axis. A controller controls the width of skew of an intensity profile representing an edge of the rectangular ion beam in a direction perpendicular to a first direction in which the tilting axis of the second sample stage is projected on the second sample stage surface so that the width will be smaller than the width of skew of an intensity profile representing another edge of the ion beam in a direction parallel to the first direction.
Abstract:
An ion beam machining and observation method relevant to a technique of cross sectional observation of an electronic component, through which a sample is machined by using an ion beam and a charged particle beam processor capable of reducing the time it takes to fill up a processed hole with a high degree of flatness at the filled area. The observation device is capable of switching the kind of gas ion beam used for machining a sample with the kind of a gas ion beam used for observing the sample. To implement the switch between the kind of a gas ion beam used for sample machining and the kind of a gas ion beam used for sample observation, at least two gas introduction systems are used, each system having a gas cylinder, a gas tube, a gas volume control valve, and a stop valve.
Abstract:
The present invention enables a sample to be observed in a clean state directly after preparation of a final observation surface when preparing a sample for observing a material that is sensitive to heat. The present invention is a method of preparing a sample using a charged particle beam device including a microprobe having a cooling mechanism, a first sample holder having a mechanism for retaining a sample in a cooled state, and a stage into which the microprobe and the first sample holder can be introduced, the method including cutting a bulk-shaped sample piece from the sample on the first sample holder retained in a cooled state; adhering the sample piece to a distal end of the microprobe that is cooled to a fixed temperature and transferring the sample piece to a second sample holder for thin film observation retained in a cooled state, which is different from the first sample holder, within a vacuum chamber of the charged particle beam device; separating the sample piece that has been transferred to the second sample holder from the microprobe and thin film processing the sample piece to a thickness that is less than the thickness during cutting; and observing the sample piece after the thin film processing.