Abstract:
An illumination device is provided with a light source, a photodetector, and a support structure. The light source, which emits light, has light distribution in which a reference axis serves as an axis of symmetry or light distribution in which a plane including the reference axis serves as a plane of symmetry. A first light beam in the light is guided to the object to be illuminated. A second light beam in the light is guided to the photodetector. The photodetector detects intensity of the second light beam. The light source and the photodetector are supported by the support structure in positions and postures that allow the first light beam and the second light beam to be guided in an aforementioned manner. A traveling direction of the first light beam and a traveling direction of the second light beam make the same angle with the reference axis.
Abstract:
An illumination device is provided with a light source, a photodetector, and a support structure. The light source, which emits light, has light distribution in which a reference axis serves as an axis of symmetry or light distribution in which a plane including the reference axis serves as a plane of symmetry. A first light beam in the light is guided to the object to be illuminated. A second light beam in the light is guided to the photodetector. The photodetector detects intensity of the second light beam. The light source and the photodetector are supported by the support structure in positions and postures that allow the first light beam and the second light beam to be guided in an aforementioned manner. A traveling direction of the first light beam and a traveling direction of the second light beam make the same angle with the reference axis.
Abstract:
A profiling apparatus includes: a holder rotationally moves around a first fulcrum, and holds a subject; a balancer rotationally moves around a second fulcrum, an intermediate part coupled to holder part and balancer, expands and contracts in a coupling direction, and bends in a direction orthogonal to the coupling direction, in which a position of the first fulcrum, a first gravity center position, a bending position, and a second gravity center position are aligned in this order. The first gravity center position corresponds to a gravity center of a part, which rotationally moves around the first fulcrum, of the subject and the holder in a case where the subject is held. The bending position corresponds to a bending point of the intermediate part. The second gravity center position corresponds to a gravity center of a part, which rotationally moves around the second fulcrum, of the second fulcrum position and balancer.
Abstract:
Colorimeter having first and second illumination units disposed symmetrically to a reference line in a prescribed plane, first and second light-receiving parts disposed symmetrically to the reference line in the prescribed plane, a calculation unit for determining color information about a measurement object, and an opposing wall that opposes the measurement object when it is measured. The opposing wall has an abutting part that abuts the measurement object when it is measured. The abutting part has a pair of first abutting parts disposed on two sides of a measurement opening to flank the measurement opening; and a pair of second abutting parts disposed on an orthogonal line orthogonal to a first-abutting-part connection line that connects the pair of first abutting parts to each other, the pair of second abutting parts being disposed on two sides of the first-abutting-part connection line to flank the first-abutting-part connection line.
Abstract:
First and second measurement operations are performed according to each of a plurality of geometric conditions while keeping the geometric condition. In the first measurement operation, illumination light is radiated from a first light radiating position toward a measurement target position and spectroscopic measurement is performed on reflected light traveling from the measurement target position toward a first light receiving position. In the second measurement operation, illumination light is radiated from a second light radiating position toward a measurement target position and spectroscopic measurement is performed on reflected light traveling from the measurement target position toward a second light receiving position. The two spectroscopic measurement results are averaged. The second light radiating position and the second light receiving position are respectively disposed symmetrical to the first light radiating position and the first light receiving position with respect to a reference axis.