Abstract:
An ion pump has an exterior magnet and a chamber wall defining an interior. The interior contains an anode having an exterior surface extending around an axis and defining an opening wherein the axis passes through the opening and a post made of ferrous material, aligned with the axis of the anode and positioned between the exterior magnet and the anode.
Abstract:
An object of the present invention is to provide an ion milling apparatus capable of processing deposits attached to an ion gun and an ion milling method capable of processing deposits attached to an ion gun. The ion milling apparatus includes gas injection means for injecting a gas toward the ion gun, and the gas injection means included in the ion milling apparatus moves the deposits attached to the ion gun by injecting the gas toward the inside of the ion gun.
Abstract:
To provide an ion gun of a penning discharge type capable of narrowing a beam with a low ion beam current at a low acceleration voltage, an ion milling device including the same, and an ion milling method.An ion milling device that controls half width of a beam profile of an ion beam with which a sample is irradiated from an ion gun to be in a range of 200 μm to 350 μm. The device includes: the ion gun that ionizes a gas supplied from the outside, and emits an ion beam; a gas-flow-rate varying unit that varies a flow rate of the gas supplied to the ion gun; and a current measurement unit that measures a current value of the ion beam emitted from the ion gun. The gas-flow-rate varying unit sets a gas flow rate to be higher than a gas flow rate at which the ion beam current has a maximum value based on the current value measured by the current measurement unit and the flow rate of the gas determined by the gas-flow-rate varying unit.
Abstract:
In accordance with the invention, the ion source of a time-of-flight mass spectrometer includes an electron gun having an electron source and at least one electrode for conditioning the flow of electrons, followed by at least one microchannel wafer for generating a pulsed secondary electron beam containing a greater number of electrons from a pulsed primary electron beam. The secondary electron beam enters a gas ionization area of an ion gun which produces a flow of ions which is then passed through the flight tube in order to be analyzed by an ion detector. This provides a high-performance ion source which is compact, sensitive and easy to integrate.
Abstract:
Methods and apparatus are provided for generating oxygen ions in an ion source having an arc chamber containing at least one oxidizable metal. The method includes the steps of feeding gaseous H2O into the arc chamber and operating the arc chamber in a temperature range where the free energy of formation of gaseous H2O is less than the free energy of formation of oxides of the oxidizable metal.
Abstract:
An ion generator chamber, for an implantation apparatus, having its interior walls surfaces knurled or roughened so that any of the materials used in the chamber cannot deposit onto the interior wall surfaces in a size sufficiently large enough to adversely affect the operation of the chamber, if the deposits peel off the interior walls of the chamber. By limiting the size of any deposits on interior chamber walls, the invention extends the average life of the filaments used in the chamber as well as extending the average time between any necessary cleaning of the inner chamber walls thereby extending the operating life of the chamber.
Abstract:
A high pulse repetition frequency (PRF) plasma gun is provided, which gun inlets a selected propellant gas into a column formed between a center electrode and a coaxial outer electrode, utilizes a solid state high repetition rate pulse driver to provide a voltage across the electrodes and provides a plasma initiator at the base of the column, which is normally operative when the driver is fully charged. For preferred embodiments, the initiator includes a sold state simulated RF driver, the outputs from which are applied to electrodes affixed in an insulator and producing a high voltage field at a surface of the insulator which forms part of the base end of the column. The plasma expands from the base end of the column and off the exit end thereof. When used as a thruster, for example in space applications, the driver voltage and electrode lengths are selected such that the plasma for each pulse exits the column at approximately the same time the voltage across the electrodes reaches zero, thereby maximizing the thrust. When used as a radiation source, the voltage and electrode length are selected such that the plasma exits the column when the current is maximum. The plasma is magnetically pinched as it exits the, column, thereby raising the plasma temperature, energizing an element in fluid state applied to the pinch, for example through the center electrode, to provide radiation at a desired wavelength. The element may also be applied to the pinch by forming at least one of the center and outer electrodes of a sintered powder refractory metal, the element in fluid form being wicked into the electrode. The plasm gun parameters can be selected to achieve a desired wavelength, which may for example be within the EUV or VUV band. The pulse driver preferably provides a high voltage spike followed by a lower voltage, longer duration sustainer signal, most of the driver energy being provided by the sustainer signal. The plasma gun of this invention, which is capable of operating at PRFs in the range of approximately 100 Hz to in excess of 5,000 Hz, may also be used in other applications.
Abstract:
In an efficient ion source BF.sub.3 gas is first passed over solid boron heated in an oven to at least 1100.degree. C. to reduce the BF.sub.3 to BF molecules. It is also proposed to use solid boron as feed stock by heating this in an oven to at least 1800.degree. C. to produce boron vapour. Either a reactive gas such as fluorine or an inert gas such as Argon is also introduced into the arc chamber to react with or sputter off boron condensing on the arc chamber walls.
Abstract:
When a trigger discharge between a metal cathode and a trigger ring induces a vacuum-arc discharge between the cathode an anode, which vaporizes the substances of the cathode surface to produce a metal ion plasma, setting the pulse length of the arc pulse applied between the cathode and the anode to 1 msec or longer will soon short-circuit between the cathode and the trigger ring due to the vaporized substances deposited on the surface of the insulating ring. In order to solve this problem, a permanent magnet 36 for forming a magnetic field across a space between the anode 26 and the cathode 34 is provided close to the rear side of the trigger ring 35 so as to guide the substances vaporized from the cathode 34 toward the anode 26. Thereby, a longer continuous operation can be done with setting the arc pulse longer. moreover, since the permanent magnet 36 is provided at the foregoing position, the magnet does not receive a thermal load by the vacuum-arc discharge, which maintains a stable operation and makes the total construction compact.
Abstract:
A single potential ion source includes a single conical electrode encircled by a cylindrical magnet. At least one filament is placed proximate to the electrode. This arrangement serves to accelerate electrons created by energy from the filament toward a center axis of the conical electrode. The electrons collide with gas particles to create a focused ion stream. The stream may be directed into a magnetic field in a mass spectrometer tube.