Abstract:
Laboratory test apparatus for conducting a mass spectrometry test on a blood-based sample of a cancer patient includes a classification procedure implemented in a programmed computer that generates a class label. In one form of the test, “Test 1”, if the sample is labelled “Bad” or equivalent the patient is predicted to exhibit primary immune resistance if they are later treated with anti-PD-1 or anti-PD-L1 therapies. In “Test 2” the Bad class label predicts that the patient will have a poor prognosis in response to treatment by either anti-PD-1 or anti-PD-L1 therapies or alternative chemotherapies, such as docetaxel or pemetrexed. “Test 3” identifies patients that are likely to have a poor prognosis in response to treatment by either anti-PD-1 or anti-PD-L1 therapies but have improved outcomes on alternative chemotherapies. A Good class label by either Test 1 or 2 predicts very good outcome on anti-PD-1 or anti-PD-L1 monotherapy.
Abstract:
The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
Abstract:
A technique for providing a grid for a gate such as utilized in gating a stream of ions or other particles in a spectrometer instrument. The grid of wires may, for example, be a so-called Bradbury-Nielson Gate that consists of a set of two electrically isolated sets of equally spaced wires that lie substantially in the same plane and alternate in potential. The method utilized to provide is to first fabricate a frame of an insulating substrate having a hole and depositing metal film patterns such that conductive portions are formed on either side of the hole. Conductive portions on either side form a series of terminating pads on the portion of the substrate closest to the hole and a bus bar. Grid wires are then formed by stretching a section of wire with desired constant tension across the hole and bonding the ends of the wire to a respective one of the pads on one side and bus bar on the other side. The method provides a rapid, inexpensive way to fabricate such modulating devices.
Abstract:
There is disclosed a time-of-flight ion-scattering spectrometer which comprises an ultra-high vacuum chamber sized to accommodate a flight path of sufficient length to provide unit mass resolution at all detection positions and which has means for detecting both ions and neutral particles at both continuously variable forward scattering and backscattering angles. Spectra of both neutrals plus ions as well as neutrals only can be obtained in the same experiment. The polar incidence angle, surface azimuthal angle, and scattering (or recoil) angle can all be varied continuously and independently of one another. The associated method, Scattering and Recoiling for Electron Distributions and Structure (SREDS), allows one to determine atomic structure of substrate surfaces, the structure of adsorbate sites, and electron distributions above surfaces. Even light adsorbates such as hydrogen, carbon, and oxygen can be quantitated by this method.
Abstract:
An apparatus for separating charged particles according to their respective energies. The charged particles are decelerated and passed through a long cylindrical electrode having a focusing coil. Since the velocity of the particles differs according to their respective energies, the particles are separated in the electrode and exit the electrode at different times.
Abstract:
The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
Abstract:
The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
Abstract:
The present invention relates to a method of mass spectrometry, an apparatus adapted to perform the method and a mass spectrometer. More particularly, but not exclusively, the present invention relates to a method of mass spectrometry comprising the step of associating parent and fragmentation ions from a sample by measuring the parent and fragmentation ions from two or more different areas of the sample and identifying changes in the number of parent ions between the areas in the sample, and corresponding changes in the number of fragmentation ions between the two areas.
Abstract:
A time-of-flight (TOF) photoemission electron energy analyzer includes a TOF spectrometer for measuring an energy spectrum of a beam of electrons photoemitted from a sample and a 90 degree bend bandpass filter for spatially dispersing and filtering electrons according to energy. An exchange scattering electron spin polarimeter for detecting the spin of electrons includes an entrance aperture for admitting an electron beam, a magnetizable target positionable for receiving the electron beam at an angle relative to a target surface normal vector, a pair of Helmholtz coils positioned about the target for magnetizing the target in a selected direction, and a high-speed multi-channel plate (MCP) detector facing toward the target for receiving electrons reflected from the target surface, the MCP outputting a signal corresponding to the spin dependent intensity and time of electrons' arrivals.
Abstract:
A technique for providing a grid for a gate such as utilized in gating a stream of ions or other particles in a spectrometer instrument. The grid of wires may, for example, be a so-called Bradbury-Nielson Gate that consists of a set of two electrically isolated sets of equally spaced wires that lie substantially in the same plane and alternate in potential. The method utilized to provide is to first fabricate a frame of an insulating substrate having a hole and depositing metal film patterns such that conductive portions are formed on either side of the hole. Conductive portions on either side form a series of terminating pads on the portion of the substrate closest to the hole and a bus bar. Grid wires are then formed by stretching a section of wire with desired constant tension across the hole and bonding the ends of the wire to a respective one of the pads on one side and bus bar on the other side. The method provides a rapid, inexpensive way to fabricate such modulating devices.