Abstract:
The present invention relates to a method for the production of very small trenches in semiconductor devices. The formation of these small trenches is based on chemically changing the properties of a first dielectric layer locally, such that the side walls of a patterned hole in said first dielectric layer are converted locally and become etchable by a first etching substance. Subsequently a second dielectric material is deposited in the patterned structure and the damaged part of the first dielectric material is removed such that small trenches are obtained. The small trenches obtained by chemically changing the properties of a dielectric layer can be used as test vehicle to study barrier deposition, copper plating and seedlayer deposition within very small trenches (order 10-30 nm).
Abstract:
A microprotrusion array is formed from a silicon wafer by a plurality of sequential plasma and wet isotropic and anisotropic etching steps. The resulting microprotrusions have sharpened tips or cutting edges formed by a wet isotropic etch.
Abstract:
A microelectromechanical structure is formed by depositing sacrificial and structural material over a substrate to form a structural layer on a component electrically attached with the substrate (step 102). The galvanic potential of the structural layer is greater than the galvanic potential of the component. At least a portion of the structural material is covered with a protective material that has a galvanic potential less than or equal to the galvanic potential of the component (step 104 or 106). The sacrificial material is removed with a release solution (step 108 or 110). At least one of the protective material and release solution is surfactanated, the surfactant functionalizing a surface of the component.
Abstract:
An apparatus and method for suspending and strain isolating a structure is provided, the apparatus having a first elongated flexure having first and second ends structured for connection to a support structure, and a second elongated flexure having first and second ends structured for connection to a structure to be isolated from the support structure. A portion of the second flexure intermediate the first and second ends thereof is interconnected to a portion of the first flexure intermediate the first and second ends thereof. The strain relief structure may be used in an accelerometer. The structure may have a H or X form, where the legs represent the elongated flexures.
Abstract:
The tiltable-body apparatus including a frame member, a tiltable body, and a pair of torsion springs having a twisting longitudinal axis. The torsion springs are disposed along the twisting longitudinal axis opposingly with the tiltable body being interposed, support the tiltable body flexibly and rotatably about the twisting longitudinal axis relative to the frame member, and include a plurality of planar portions, compliant directions of which intersect each other when viewed along a direction of the twisting longitudinal axis. A center of gravity of the tiltable body is positioned on the twisting longitudinal axis of the torsion springs.
Abstract:
The invention relates to a method for the production of a silicon torsion spring, whereby, for instance, the rotational speed in a microstructured torsion spring-mass system can be read. The invention aims at providing low torsional stiffness in comparison with a relatively high transversal stiffness in lateral and vertical direction. According to the invention, a wafer or wafer composite is used to produce a spring having a V-shaped cross section after masking by means of anisotropic wet-chemical etching, said spring extending preferably over the entire thickness of the wafer and being defined laterally by the [111] surfaces only. Two wafers or wafer composites thus prestructured are rotated by 180° and bonded to one another by aligning them in a mirror-inverted manner in such a way that the desired X-shaped cross section is obtained. One advantage provided by the invention is that the technology used in the production of the laterally and vertically rigid rotational spring is comparatively simple.
Abstract:
The disclosure relates to a method for manufacturing recessed micromechanical structures in a MEMS device wafer. First vertical trenches in the device wafer define the horizontal dimensions of both level and recessed structures. The horizontal face of the device wafer and the vertical sidewalls of the first vertical trenches are then covered with a self-supporting etching mask which is made of a self-supporting mask material, which is sufficiently rigid to remain standing vertically in the location where it was deposited even as the sidewall upon which it was deposited is etched away. Recess trenches are then etched under the protection of the self-supporting mask. The method allows a spike-preventing aggressive etch to be used for forming the recess trenches, without harming the sidewalls in the first vertical trenches.
Abstract:
A manufacturing method of a physical quantity sensor includes forming a first fixed electrode, a second fixed electrode, and a dummy electrode on a substrate; and a movable body forming. The electrode forming includes forming a first mask layer on the substrate, forming a first electrode material layer by forming a first conductive layer on the substrate and the first mask layer, forming a second conductive layer on the substrate and the first electrode material layer, forming a second mask layer by forming a mask material layer on the second conductive layer, and removing a part of a section of the mask material layer not overlapping the first electrode material layer in plan view, and forming a second electrode material layer by etching the second conductive layer, with the second mask layer as a mask such that the second conductive layer is provided on the first electrode material layer and on the substrate.
Abstract:
The invention concerns, in particular, a method for producing patterns in a layer to be etched (410), from a stack comprising at least the layer to be etched (410) and one masking layer (420) overlying the layer to be etched (410), the masking layer (420) having at least one pattern (421), the method comprising at least: a) a step of modifying at least one area (411) of the layer to be etched (410) by ion implantation (430) in line with the at least one pattern (421); b) at least one sequence of steps comprising: b1) a step (440) of enlarging the at least one pattern (421) in a plane in which the layer (410) to be etched mainly extends; b2) a step of modifying at least one area (411', 411'') of the layer to be etched (410) by ion implantation (430) in line with the at least one enlarged pattern (421), the implantation being carried out at a depth less than the implantation depth of the preceding modification step; c) a step (461, 462) of removing the modified areas (411, 411', 411''), the removal comprising a step of etching the modified areas (411, 411', 411'') selectively to the non-modified areas (412) of the layer (410) to be etched.
Abstract:
An MEMS-based method for manufacturing a sensor comprises the steps of: forming a shallow channel (120) and a support beam (140) on a front surface of a substrate (100); forming a first epitaxial layer (200) on the front surface of the substrate (100) to seal the shallow channel (120); forming a suspended mesh structure (160) below the first epitaxial layer (200); and forming a deep channel (180) at a position on a back surface of the substrate (100) corresponding to the shallow channel (120), so that the shallow channel (120) is in communication with the deep channel (180). In the Method of manufacturing a MEMS-based sensor, when a shallow channel is formed on a front surface, a support beam of a mass block is formed, so the etching of a channel is easier to control, the process is more precise, and the uniformity and the homogeneity of the formed support beam are better.