Abstract:
An integrated semiconductor device containing semiconductor elements that have respective desired on-resistances and breakdown voltages achieves appropriate characteristics as a whole of the integrated semiconductor element. The integrated semiconductor device (50) includes a plurality of semiconductor elements (50a, 50b, 50c) formed in a semiconductor layer and each having a source (6) of an n type semiconductor, a drain (3) of the n type semiconductor and a back gate (5) of a p type semiconductor between the source and the drain. At least a predetermined part of the drain of one semiconductor element and a predetermined part of the drain of another semiconductor element have respective impurity concentrations different from each other.
Abstract:
The dynamic range is changed by switching a current applied to an amplifying circuit to obtain the minimum ICP required to keep linearity with the number of multiplexes even when the number of multiplexes of data is changed by switching the operation current of the amplifying circuits of the transmission system and also supplying the information about number of multiplexes of data to be transmitted to the amplifying circuits of the transmission system from the baseband circuit. Thereby, the signal can be transmitted without distortion even when the number of multiplexes increases and the current of the amplifying circuit may be reduced when the number of multiplexes is small in order to reduce the current consumption in the communication semiconductor integrated circuit device which can form a wireless communication system of the code division multiplex system such as W-CDMA system.
Abstract:
The present invention provides a high frequency amplifier suitable for use in a wireless communication system which performs detection of an output level necessary for feedback control by a current detection system, wherein control sensitivity in an area low in transmit request level is lowered so that an output level can be controlled over the whole control range with satisfactory accuracy. There is provided a high frequency power amplification electric part constituting a wireless communication system, which performs detection of an output level necessary for feedback control of output power by a current detection system, compares the output level detected signal and an output level designation signal and generates a bias voltage for a high frequency power amplifier according to the difference therebetween to thereby control gain, wherein an nth root converter or a logarithm converter is provided between a current detector and a current-voltage converter.
Abstract:
Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn-Ag-Bi alloy solder is applied to an electrode through an Sn-Bi alloy layer. The Sn-Bi alloy, preferably, comprises 1 to 20 wt% Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn-Bi alloy layer thereby obtaining an enough bonding strength.
Abstract:
The semiconductor integrated circuit device includes: a first latch which can hold an output signal of the X decoder and transfer the signal to the word driver in a post stage subsequent to the X decoder; a second latch which can hold an output signal of the Y decoder and transfer the signal to the column multiplexer in the post stage subsequent to the Y decoder; and a third latch which can hold an output signal of the sense amplifier and transfer the signal to the output buffer in the post stage subsequent to the sense amplifier. The structure makes it possible to pipeline-control a series of processes for reading data stored in the non-volatile semiconductor memory, and enables low-latency access even with access requests from CPUs conflicting.
Abstract:
An adapter for a memory card having a frame metal fitting to which an end portion of the card is inserted, whereby the card is detachably fitted, and a resin-molded body core assembled in the frame metal fitting by insertion, wherein an entire thickness of the adapter being approx. the same as that of the card, the frame metal fitting having a pair of holding portions in an approx. ⊐ shape in both end portions on the side of the card attached to hold both sides of the card, a hook portion between a pair of the holding portions being detachably engaged with the end portion of the card by spring force to prevent the card from coming off, a caulking projection fixing the core by caulking to the core, and an insulative coating film formed on the outer surface of the frame metal fitting.
Abstract:
A parallel resonant circuit is realized by stacking first to fourth wiring patterns each having at least an inductance element. One of the adjacent first and second wiring patterns is set to a signal input node and the other thereof is set to a signal output node. Then, the signal input node is connected to the signal output node via inductance elements of the first wiring pattern, third wiring pattern, fourth wiring pattern and second wiring pattern in order. By adjacently forming wiring layers of the signal input and output nodes, a capacitance value between the input and output nodes is increased compared to that when they are separated. Also, by increasing the line width of the first and second wiring patterns, the capacitance value can be further increased. Therefore, it is possible to achieve a large capacitance value in a small area and downsizing of the electronic device.
Abstract:
On the same semiconductor substrate 1, a memory cell array in which a plurality of memory elements R having a chalcogenide-material storage layer 22 storing a high-resistance state with a high electric resistance value and a low-resistance state with a low electric resistance value by a change of an atom arrangement are disposed in a matrix is formed in a memory cell region mmry, and a semiconductor integrated circuit is formed in a logic circuit region lgc. This chalcogenide-material storage layer 22 is made of a chalcogenide material containing at least either one of Ga or In of 10.5 atom% or larger to 40 atom% or smaller, Ge of 5 atom% or larger to 35 atom% or smaller, Sb of 5 atom% or larger to 25 atom% or smaller, and Te of 40 atom% or larger to 65 atom% or smaller.