Abstract:
A biosensor is provided to lower operation current in sensing part of biomass lowering contact resistance between silicon nanowire and metal electrode. A biosensor comprises a silicon plate(200), source area(210), drain area(220), insulating layer(230) and silicon nano wire(240). The source area and drain area is arranged on the silicon plate. The insulating layer is arranged between source area and drain area. The silicon nano wire comprises defect area(241) and is arranged on the source area and drain area. A method for manufacturing the biosensor comprises: a step of preparing the silicon plate; a step of forming source area and drain area on the silicon plate; a step of arranging the silicon nano wire on the source area and drain area; and a step of irradiating electronic beam in one area of the silicon nano wire to form the defect area.
Abstract:
A high sensitive sensor and a manufacturing method thereof are provided to obtain a high signal by controlling depletion and accumulation of a channel by combining a target material and a sensing material in both sides. An SOI(Silicon On Insulator) substrate is formed in an upper part of a semiconductor substrate. A mask pattern is formed by performing a lithography process in the upper part of the SOI substrate. The structure of a pin shape is formed by etching a silicon layer in the upper part of the SOI substrate. The sensor structure with a pin shaped structure is formed on the semiconductor substrate. A metal electrode is deposited by implanting the ion for electrical ohmic contact to the sensor structure. A sensing material combined in a target material is fixed in both sidewalls of the pin shaped structure. The path for penetrating the target material through the pin-shaped structure is formed on the sensor structure.
Abstract:
A semiconductor nano wire sensor and a manufacturing method thereof are provided to implement a silicon nano wire channel of a line width with several nano meters by using a photolithographic process. A first conductive single crystal silicon line pattern is formed in the uppermost layer of an SOI(Silicon On Insulator) substrate. A second conductive channel(216b) is formed in both ends of the line width direction of the first conductive single crystal silicon line pattern. The second conductive pad is formed in both sides of the longitudinal direction of the first conductive single crystal silicon line pattern. A first electrode(242) for applying a reverse bias voltage is formed in an undoped region of the first conductive single crystal silicon line pattern. A second electrode(232) for applying the bias voltage to both sides of the second conductive channel is formed on the second conductive pad.
Abstract:
A three dimensional nano device including nano structures is provided to complement electrical devices and optical devices to each other by improving electrical characteristics of nano device presented in a two-dimensional plane structure. A three dimensional nano device including nano structures comprises: at least one nano structure having a vibration unit(111) formed above a substrate and a support unit(112) supporting the both ends of the vibration unit; a support stand(120) formed on the substrate to support the support unit of the nano structures; a controller, formed in an upper part or lower part of the substrate or both sides of the upper part and lower part, for controlling the nano structures; a sensing unit(150) formed on the vibration unit to sense materials which are flowed in from the outside; and an external vibration unit formed in the lower part of the substrate.
Abstract:
본 발명은 소스 및 드레인 전극을 촉매로 하여 채널영역을 결정화시킬 수 있는 쇼트키 장벽 박막 트랜지스터(Schottky Barrier Thin Film Transistor) 제조방법에 관한 것으로, 이를 위한 본 발명의 쇼트키 장벽 박막 트랜지스터의 제조방법은 기판 상부에 비정질실리콘 활성층을 형성하는 단계; 상기 비정질실리콘 활성층의 채널영역과 쇼트키접합(schottky junction)을 형성하도록 소스 및 드레인 전극을 금속실리사이드로 형성하는 단계 및 상기 소스 및 드레인 전극을 촉매로 하여 상기 채널영역의 비정질실리콘을 폴리실리콘으로 결정화시키는 단계를 포함하고 있으며, 이를 통하여 공정과정을 단순화시킬 수 있으며, 공정비용을 절감할 수 있는 효과가 있다. 비정질실리콘, 폴리실리콘, 쇼트키장벽, 박막트랜지스터, 결정화
Abstract:
A biochemistry sensor surface treating apparatus is provided to mass produce a sensor by performing a process of surface-processing the sensor by using automatized apparatus. A biochemistry sensor surface treating apparatus contains one or more containers(216) putting one sample of chemical substance, biochemical substance and biomass which are samples surface-processed at one-side of chip used as a biochemistry sensor; a chip off-loading unit(224) having size inserted inside the container for surface process of chip; one or more process areas(210,230) containing a changeable transfer frame(214) changed along X-Y-Z shafts for surface-processing the chip. A first engaging portion attaching/detaching the chip off-loading unit is equipped at a bottom of the Z-shaft.
Abstract:
Substrates for analyzing the coverage of self-assembled molecules are provided to measure efficiently the presence and reaction degree of functional groups on the surface of self-assembled molecules by using nanoparticles without use of complicated methods such as FT-IR(Fourier Transform InfraRed), XPS(X-ray photoelectron spectroscopy) and fluorescence method. A substrate for analyzing the coverage of self-assembled molecules comprises: a substrate(100) for immobilizing biomaterials; a self-assembled molecule layer(102) formed on the substrate and having a functional group capable of reacting with an amine group; a capture DNA molecule(200) having the amine group to be combined with the self-assembled molecule layer; and a probe DNA molecule combining with the capture DNA molecule and having nanoparticles on the surface, wherein the functional group capable of reacting with an amine group is -SH, -NH2, -Si(OCH3)3, -Si(OC2H5)3 and -Si(Cl)3. Further, the substrate(100) for immobilizing biomaterial is one selected from a group consisting of glass, polycarbonate, polyester, polyethylene, polypropylene and wafer.
Abstract:
A process for fabrication of a sensor having a nano-gap electrode is provided to form the sensor with excellent sensitivity compared to common detective sensors and to ensure integration and massive production of sensor devices by forming a laminate structure of metal electrode layer and intermediate oxide layer and adopting the structure for the nano-gap electrode sensor. The process includes the steps of: (a) partitioning top side of an oxide layer into first, second and third regions; (b) forming first metal electrode layer(20,60) on the first and second regions and preparing an intermediate oxide layer over the first metal electrode layer; (c) forming second metal electrode layer(40,80) on the first and third regions and preparing another intermediate oxide layer over the second metal electrode layer; (d) repeatedly performing the steps of (b) and (c) to laminate multiple metal electrode layers and the intermediate layers(30,50,70); (e) forming multiple channels to pass through all of the metal electrode layers and the intermediate layers; and (h) partially etching the intermediate oxide layers to form nano-gaps between the first and second metal electrode layers.
Abstract:
A method for crystallizing silicon, a thin film transistor manufactured by the same, and its manufacturing method are provided to improve electron mobility of the thin film transistor by metal-catalyst-induced crystallization. A crystalline filter(120) is formed on a substrate(100). A metal catalyst layer(130) is formed in the crystalline filter. A resist pattern having holes is formed on the substrate. The substrate is patterned along the resist pattern to form the crystalline filter of a well structure. An amorphous silicon layer(140) is deposited on the whole substrate including the crystalline filter. The substrate is thermally processed to crystallize the amorphous silicon layer by metal-catalyst-induced crystallization, so that electron mobility of a thin film transistor is improved.
Abstract:
충돌 이온화를 이용한 트랜지스터 및 그 제조 방법을 제시한다. 본 발명에 따르면, 반도체 기판 상에 게이트 유전막, 게이트 및 제1 및 제2 측벽 스페이서를 형성하고, 반도체 기판에 불순물을 경사 이온 주입하여 게이트 및 제1 및 제2스페이서에 마스킹(masking)되어 제1스페이서로부터 이격된 제1불순물층 및 제2스페이서 아래에 중첩되게 연장된 제2불순물층을 형성한다. 상호 간의 사이의 반도체 기판 영역을 이온화 영역으로 설정하는 소스 및 드레인을 제1 및 제2스페이서에 각각 자기 정렬되게 반도체 기판 상에 형성한다. 이때, 소스가 이온화 영역과 쇼트키 접합(schottky junction)을 이루게 제1금속 실리사이드막을 포함하여 형성되고, 드레인이 제2스페이서 아래에 중첩되는 제2불순물층 부분 및 제2불순물층 영역과 저항성 접촉(ohmic contact)을 이루게 제2스페이서에 정렬되는 제2실리사이드막을 포함하여 형성된다. 충돌 이온화, 애벌랜치 항복, 실리사이드, 쇼트키 장벽, 비대칭 소스 드레인