Abstract:
An electrical component provides a ceramic element 264 located on or in a dielectric substrate 262 between and in contact with a pair of electrical conductors 260A,.260B, wherein the ceramic element includes one or more metal oxides having fluctuations in metal- oxide compositional uniformity less than or equal to 1.5 mol% throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
Abstract:
A printed wiring board (PWB) has stacked innerlayer panels (1001, 1002, 1003, ...) comprised of passive circuit elements (105). The passive elements (105) can include capacitors with electrode terminations located within the footprints of the capacitor electrodes (170, 180). The capacitor terminations are therefore closely spaced, reducing the capacitors' contributions to loop inductance in the innerlayer. Capacitor terminations within the electrode footprints also reduce the PWB board surface area used in forming the capacitors. The capacitor terminations are connected by circuit conductors (1021, 1022).
Abstract:
An embedded inductor which includes a spiral conductive inductor (27) embedded in a magnetically permeable body (29) composed of particles of pre-sintered magnetically permeable, e.g. ferromagnetic, material and an epoxy binder.
Abstract:
The invention relates to a chip card which comprises a core film (1) and two covering films, means for transmitting data with and/or without contacts, a semiconductor chip and optionally at least one additional electronic component, a capacitor (2) as well as strip conductors (4, 4') for electrically contacting the components. The capacitor (2) is formed from two partially overlapping strip conductors (4, 4') that are separated from one another in the overlapping area by means of a dielectric. Said strip conductors (4, 4') are produced by screen-printing a UV-hardenable material onto the core film and the dielectric (3) is produced by screen-printing a UV-hardenable or anaerobically hardenable material.
Abstract:
Die Erfindung betrifft eine elektronische Schaltung (1, 10, 100, 101, 102), welche mindestens zwei, mittels Leiterbahnen miteinander verschaltete organische Bauelemente (I, II, III, IV, V) mit einem gemeinsamen Trägersubstrat (2) umfasst. Die Bauelemente (I, II, III, IV, V) und die Leiterbahnen sind aus Schichtlagen (3a, 3b, 3c, 3d) gebildet. Eine dem Trägersubstrat (2) abgewandte oberste Schichtlage (3d') der elektronischen Schaltung (1, 10, 100, 101, 102) ist musterförmig und aus einem elektrisch leitenden Material ausgebildet. Die musterförmige oberste Schichtlage (3d') ist auf ihrer dem Trägersubstrat (2) abgewandten Seite mit mindestens einer deckungsgleich zur obersten Schichtlage (3d') angeordneten Schutzschicht (4a, 4b, 4c, 4d) versehen. Die mindestens zwei organischen Bauelemente (I, II, III, IV, V) umfassen mindestens ein erstes Bauelement (I, II) eines ersten Bauelementtyps und mindestens ein zweites Bauelement (III, IV, V) eines dazu unterschiedlichen zweiten Bauelementtyps. Bauelemente (I, II) vom gleichen Bauelementtyp sind jeweils durch eine Schutzschicht (4a) gleicher Zusammensetzung und/oder gleichen Aufbaus geschützt.
Abstract:
This invention relates to compositions, and the use of such compositions for protective coatings, particularly of electronic devices. The invention concerns fired-on-foil ceramic capacitors coated with a composite encapsulant and embedded in a printed wiring board.
Abstract:
A multi-layered circuit board is provided having a buried capacitive layer and a device-specific embedded, localized, non-discrete, and distributive capacitive element. A printed circuit board is provided including (1) a first dielectric layer, (2) a first conductive layer coupled to a first surface of the first dielectric layer, (3) a second conductive layer coupled to a second surface of the first dielectric layer, and (4) a localized distributive non-discrete capacitive element adjacent the first conductive layer, wherein the capacitive element occupies a region that approximately coincides with a location over which a device to be coupled to the capacitive element is to be mounted. The embedded, localized, non-discrete, and distributive capacitive element may provide device-specific capacitance to suppress voltage/current noise for a particular device.