Abstract:
Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
Abstract:
Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include integrated illumination elements and optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
Abstract:
A circuit comprising a substrate with sectors on the substrate is provided, each sector comprising clock and data lines, a controller in electrical communication with the clock and data lines, a counter bias line, an amplifier input line and nano-electronic measurement devices on the substrate. A source of each device is coupled to the counter bias line and a drain of each device is coupled to the amplifier input line to obtain an electrical signal on the drain, the identity of which is determined by electrical interaction between the device and a charge label. Each device drain is gated by a corresponding switch between an on state, in which the drain is connected to the amplifier input line, and an off state, in which the drain is isolated from the amplifier input line. The controller controls switch states responsive to clock signal line pulses and data input line data.
Abstract:
A system for measuring analytical reactions comprising a socket (51, 57) which is suitable for holding an optode array chip (40).The socket comprises electrical contacts that mate with electrical contacts on a chip when such a chip is inserted into the socket. The socket furthermore permits fluid from a fluidics system (33) and illumination from an illumination system (53) to be for delivered to a chip when such a chip is inserted into the socket. The socket may be of the clam shell type.
Abstract:
A system for measuring analytical reactions comprising a socket (51, 57) which is suitable for holding an optode array chip (40).The socket comprises electrical contacts that mate with electrical contacts on a chip when such a chip is inserted into the socket. The socket furthermore permits fluid from a fluidics system (33) and illumination from an illumination system (53) to be for delivered to a chip when such a chip is inserted into the socket. The socket may be of the clam shell type.