Abstract:
The invention relates to a micromechanical device comprising a semiconductor element capable of deflecting or resonating and comprising at least two regions having different material properties and drive or sense means functionally coupled to said semiconductor element. According to the invention, at least one of said regions comprises one or more n-type doping agents, and the relative volumes, doping concentrations, doping agents and/or crystal orientations of the regions being configured so that the temperature sensitivities of the generalized stiffness are opposite in sign at least at one temperature for the regions, and the overall temperature drift of the generalized stiffness of the semiconductor element is 50 ppm or less on a temperature range of 100°C. The device can be a resonator. Also a method of designing the device is disclosed.
Abstract:
A silicon processing method includes: forming a mask pattern on a principal plane of a single-crystal silicon substrate; and applying crystal anisotropic etching to the principal surface to form a structure including a (111) surface and a crystal surface equivalent thereto and having width W1 and length L1. The principal plane includes a (100) surface and a crystal surface equivalent thereto or a (110) surface and a crystal surface equivalent thereto. A determining section for determining the width W1 of the structure is formed in the mask pattern. The width of the determining section for the width W1 of the mask pattern is width W2. The width of the mask pattern other than the determining section is larger than the width W2 over a length direction of the mask pattern.
Abstract:
A method of manufacturing a structure (1100), the method comprising forming a cap element (401) on a substrate (101), removing material (103) of the substrate (101) below the cap element (401) to thereby form a gap (802) between the cap element (401) and the substrate (101), and rearranging material of the cap element (401) and/or of the substrate (101) to thereby merge the cap element (401) and the substrate (101) to bridge the gap (802).
Abstract:
Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.
Abstract:
A piezoelectric filter having a smaller size is provided. A piezoelectric filter (10) includes a first substrate (22) having at least one first piezoelectric resonator (25) disposed on a main surface of the first substrate (22); a second substrate (12) having at least one second piezoelectric resonator (15) disposed on a main surface of the second substrate (12); a connection pattern (20) extending around the first piezoelectric resonator (25) and the second piezoelectric resonator (15) and disposed between the first substrate (22) and the second substrate (12), the main surface of the first substrate (22) facing the main surface of the second substrate (12), the first piezoelectric resonator (25) being bonded to the second piezoelectric resonator (15) with the connection pattern (20), and the first piezoelectric resonator (25) being remote from the second piezoelectric resonator (15), and a connecting layer (24x) for bonding a pad (28x) to a pad (18x), the pad 2(8x) being disposed on the main surface of the first substrate (22) and electrically connected to the first piezoelectric resonator (25), and the pad (18x) being disposed on the main surface of the second substrate (12) and electrically connected to the second piezoelectric resonator (15).
Abstract:
Thermally induced frequency variations in a micromechanical resonator are actively or passively mitigated by application of a compensating stiffness, or a compressive/tensile strain. Various composition materials may be selected according to their thermal expansion coefficient and used to form resonator components on a substrate. When exposed to temperature variations, the relative expansion of these composition materials creates a compensating stiffness, or a compressive/tensile strain.