Abstract:
A process cycles between etching and passivating chemistries to create rough sidewalls that are converted into small structures. In one embodiment, a mask is used to define lines in a single crystal silicon wafer. The process creates ripples on sidewalls of the lines corresponding to the cycles. The lines are oxidized in one embodiment to form a silicon wire corresponding to each ripple. The oxide is removed in a further embodiment to form structures ranging from micro sharp tips to photonic arrays of wires. Fluidic channels are formed by oxidizing adjacent rippled sidewalls. The same mask is also used to form other structures for MEMS devices.
Abstract:
Selon l'invention, on traite par gravure au plasma un substrat (2) contenu dans une enceinte (1) dont l'atmosphère (5) est maintenue à faible pression par un dispositif de génération de vide (6, 7). Des moyens de génération de plasma (8) génèrent un plasma (9) qui agit sur la surface (2a) du substrat (2). Le procédé de gravure soumet le substrat (2) à une succession alternée d'étapes comprenant : une étape d'attaque par plasma de gaz de gravure provenant d'une source de gaz de gravure (19), une seconde étape de passivation par plasma de gaz de passivation provenant d'une source de gaz de passivation (20), elle-même suivie d'une étape impulsionnelle de dépassivation sélective par action d'un plasma de gaz de nettoyage provenant d'une source de gaz de nettoyage (21) qui enlève le polymère dans la zone de fond des cavités (2b) de façon plus efficace que le gaz de gravure. Cela permet de réaliser des cavités (2b) ayant un facteur d'aspect supérieur à 30, avec une vitesse augmentée, et une bonne sélectivité vis à vis du masque protégeant le substrat (2).
Abstract:
The present disclosure provides an etching method that includes a resist pattern-forming step of forming a resist layer on a target object, the resist layer being formed of a resin, the resist layer having a resist pattern; an etching step of etching the target object via the resist layer having the resist pattern; and a resist protective film-forming step of forming a resist protective film on the resist layer. The etching step is repetitively carried out multiple times. A processing gas, used in the resist protective film-forming step, includes a gas capable of forming SixOyαz; wherein a is any one of F, Cl, H, and CkHl; and each of x, y, z, k, is a selected non-zero value. After the etching steps are repetitively carried out multiple times, the resist protective film-forming step is performed.
Abstract:
A sensor includes a sensor substrate, and an upper lid substrate joined to an upper surface of the sensor substrate. The sensor substrate includes a fixed part, a deformable beam connected to the fixed part, and a weight connected to the beam. The weight is movable relative to the fixed part. The upper lid substrate includes a first part containing silicon and a second part joined to the first part and containing glass. The first part includes a projection protruding toward the sensor substrate relative to the second part. The sensor has high accuracy or high reliability.
Abstract:
A method for producing a micromechanical pressure sensor. The method includes: providing a MEMS wafer having a silicon substrate and a first cavity developed therein underneath a sensor diaphragm; providing a second wafer; bonding the MEMS wafer to the second wafer; and exposing a sensor core from the rear side; a second cavity being formed in the process between the sensor core and the surface of the silicon substrate, and the second cavity being developed with the aid of an etching process which is carried out using etching parameters that are modified in a defined manner.
Abstract:
The present invention relates to a micromechanical device comprising a multi-layer micromechanical structure including only homogenous silicon material. The device layer comprises at least a rotor and at least two stators. At least some of the rotor and at least two stators are at least partially recessed to at least two different depths of recession from a first surface of the device layer and at least some of the rotor and at least two stators are at least partially recessed to at least two different depths of recession from a second surface of the device layer.
Abstract:
Deep via technology is used to construct an integrated silicon cantilever and cavity oriented in a vertical plane which creates an electrostatically-switched MEMS switch in a small wafer area. Another embodiment is a small wafer area electrostatically-switched, vertical-cantilever MEMS switch wherein the switch cavity is etched within a volume defined by walls grown internally within a silicon substrate using through vias.
Abstract:
A method of reactive ion etching a substrate 46 to form at least a first and a second etched feature (42, 44) is disclosed. The first etched feature (42) has a greater aspect ratio (depth:width) than the second etched feature (44). In a first etching stage the substrate (46) is etched so as to etch only said first feature (42) to a predetermined depth. Thereafter in a second etching stage, the substrate (46) is etched so as to etch both said first and said second features (42, 44) to a respective depth. A mask (40) may be applied to define apertures corresponding in shape to the features (42, 44). The region of the substrate (46) in which the second etched feature (44) is to be produced is selectively masked with a second maskant (50) during the first etching stage, The second maskant (50) is then removed prior to the second etching stage.
Abstract:
A system and method for manipulating the structural characteristics of a MEMS device include etching a plurality of holes into the surface of a MEMS device, wherein the plurality of holes comprise one or more geometric shapes determined to provide specific structural characteristics desired in the MEMS device.
Abstract:
The invention relates to a silicon-based component with at least one reduced contact surface which, formed from a method combining at least one oblique side wall etching step with a “Bosch” etch of vertical side walls, improves, in particular, the tribology of components formed by micromachining a silicon-based wafer.