Abstract:
The present invention provides a circuit board structure, the circuit board structure consisting of a carrier board having a first surface and an opposed second surface, the carrier board being formed with at least one through hole penetrating the first and second surfaces; a conductive pillar formed in the through hole by electroplating; and a first circuit layer and a second circuit layer respectively formed on the first and second surfaces of the carrier board, the first and second circuit layers being electrically connected to the two end portions of the conductive pillar, thereby reducing spacing between adjacent conductive pillars of the carrier board and achieving high density circuit layout.
Abstract:
A wiring substrate, includes a first wiring layer, an insulating layer formed on the first wiring layer, a via conductor filled to penetrate the insulating layer in a thickness direction and connected to a connection portion of the first wiring layer, and a second wiring layer which is formed on the insulating layer and whose connection portion is connected to the via conductor, wherein, out of the first wiring layer and the second wiring layer, the connection portion of one wiring layer is formed as a land whose diameter is larger than a diameter of the via conductor, and the connection portion of other wiring layer is formed as a landless wiring portion whose diameter is equal to or smaller than a diameter of the via conductor.
Abstract:
Disclosed herein is a printed circuit board including a landless via and a method of manufacturing the printed circuit board. The printed circuit board includes a landless via having no upper land. The via includes a circuit pattern having a line width smaller than the minimum diameter of the via. The via does not have an upper land on an end surface thereof having the minimum diameter, and thus a circuit pattern connected to the via is finely formed, resulting in the high-density circuit pattern. Thus, a compact printed circuit board having a reduced number of layers is realized.
Abstract:
There are provided a method for forming a resist pattern for preparing a circuit board having a landless or small-land-width through-hole(s) to realize a high-density circuit board, a method for producing a circuit board, and a circuit board. A method for forming a resist pattern, comprising the steps of forming a resin layer and a mask layer on a first surface of a substrate having a through-hole(s), and removing the resin layer on the through-hole(s) and on a periphery of the through-hole(s) on the first surface by supplying a resin layer removing solution from a second surface opposite to the first surface of the substrate, and a method for producing a circuit board using the method for forming a resist pattern, and a circuit board.
Abstract:
A circuit board or each circuit board of a multi-layer circuit board includes an electrically conductive sheet coated with an insulating top layer covering one surface of the conductive sheet, an insulating bottom layer covering another surface of the conductive sheet and an insulating edge layer covering an edge of the conductive sheet. An insulating interlayer can be sandwiched between a pair of adjacent circuit boards of a multi-layer circuit board assembly. A landless through-hole or via can extend through one or more of the circuit boards for connecting electrical conductors on opposing surfaces thereof.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
The present invention provides a circuit board structure, the circuit board structure consisting of a carrier board having a first surface and an opposed second surface, the carrier board being formed with at least one through hole penetrating the first and second surfaces; a conductive pillar formed in the through hole by electroplating; and a first circuit layer and a second circuit layer respectively formed on the first and second surfaces of the carrier board, the first and second circuit layers being electrically connected to the two end portions of the conductive pillar, thereby reducing spacing between adjacent conductive pillars of the carrier board and achieving high density circuit layout.
Abstract:
Chip capacitors 20 are provided in a printed circuit board 10. In this manner, the distance between an IC chip 90 and each chip capacitor 20 is shortened, and the loop inductance is reduced. In addition, the chip capacitors 20 are accommodated in a core substrate 30 having a large thickness. Therefore, the thickness of the printed circuit board does not become large.
Abstract:
An electronic assembly is disclosed. The electronic assembly includes a lower portion and a first elongate trace formed on an upper surface of the lower portion. The trace is covered by an upper portion, and an opening formed through an upper surface of the upper portion extends to the trace to expose a portion of the trace. A second elongate trace is formed on the upper portion. A portion of the second elongate trace positioned in the opening formed through the upper surface of the upper portion contacts the first elongate trace through the opening to form an electrical interconnection between the first trace and the second trace.