Abstract:
An electrical connector assembly includes a circuit board having vias each extending at least partially through the circuit board along parallel via axes and an electrical connector configured to be mounted on the circuit board. The electrical connector includes a plurality of variable depth signal terminals configured to extend different depths into respective vias of the circuit board. The signal terminals each have a terminal axis, and the signal terminals are arranged in pairs carrying differential pair signals. The signal terminals of each pair extend to the same depth in the respective vias of the circuit board. The terminal axes of the signal terminals of each pair are offset with respect to the corresponding via axes along a majority of the signal terminals within the vias.
Abstract:
A printed circuit board including: a semiconductor package; a board; first to fourth electrodes on a second face of the semiconductor package; fifth to eighth electrodes on a mount region of the board; a first conductor connecting the first electrode with the second electrode; a second conductor connecting the third electrode with the fourth electrode; a third conductor connecting the sixth electrode with the seventh electrode; fourth conductors respectively connecting to the fifth electrode and the eighth electrode; conductive bonding portions bonding each of the electrodes on the second face with corresponding one of the electrodes on the mount region; and a determination circuit connected to the fourth conductors and configured to determine a difference between a value of current supplied to one of the fourth conductors and a value of current received through the other fourth conductor.
Abstract:
A printed wiring board unit includes an electronic circuit component, a printed wiring board, a plurality of first conductive terminals disposed between the electronic circuit component and the printed wiring board, at least one of the first conductive terminals arranged along a quadrangular outline, and a plurality of second conductive terminals disposed between the electronic circuit component and the printed wiring board, the second conductive terminals arranged at a corner of the quadrangular outline, and the second conductive terminals contacting at least one of the printed wiring board and the electronic circuit component in a relatively displaceable manner.
Abstract:
A high power light emitting diode, The high power light emitting diode comprises a light emitting diode chip, a main module, two first electrode pins, two second electrode pins, and at least one heat dissipation board. The main module has a concave and the light emitting diode chip is positioned in the concave. The first electrode pins are connected to a first side of the main module and also electrically connected to the light emitting diode chip. The second electrode pins are arranged on a second side of the main module that is relative to the first electrode pins wherein the second electrode pins and the first electrode pins are electrically opposite. The second electrode pins are electrically connected to the light emitting diode chip. The heat dissipation board is connected to a part of the main module between the first electrode pin and the second electrode pin.
Abstract:
An electronic component device includes a wiring substrate having a wiring pattern, an electronic component mounted on the wiring pattern of the wiring substrate and provided with an electrode arranged on a side surface thereof, and a gold bump provided on the wiring pattern in side neighborhood of the electrode of the electronic component and bonded to the electrode of the electronic component and the wiring pattern, and the electrode of the electronic component is electrically connected to the wiring pattern through the gold bump, and the gold bump is formed by a wire bump method.
Abstract:
A circuit board may include hybrid via structures configured to connect to components, such as connectors and electronic components, mounted on the circuit board. A hybrid via structure may include one or more micro-vias configured to provide an electrical connection to a signal trace in the circuit board and one or more through-vias configured to provide a ground connection to at least one reference plane in the circuit board. In one embodiment, a plurality of circuit boards including the hybrid via structures and signal traces may be connected to establish a channel supporting differential signaling and data transfer rates of at least about 5 Gb/s. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
An electronic package. The electronic package includes an electronic component having a heat producing device, an attachment piece, and at least two attachment units. Each unit includes an attachment pillar having a mating surface, a solder layer formed on the mating surface, and an attachment pad located on the attachment piece. The pillar of each unit is attached to its unit attachment pad via its unit solder layer and is otherwise attached to the electronic component. One pillar at least partially covers the heat producing device. Prior to attachment of pillars to their associated unit pads, the unit solder layer of the pillar at least partially covering the heat producing device is patterned to cover less than its mating surface, and the pillar at least partially covering the heat producing device is thermally connected to the heat producing device and to its unit attachment pad via its unit solder layer.
Abstract:
A display device includes a display panel, a printed circuit board and a semiconductor device of a film carrier type which is disposed to lie between the liquid crystal display panel and the printed circuit board and is mounted on a film carrier. First terminals of the film carrier are connected by a first anisotropic conductive film to terminals of the printed circuit board and second terminals of the film carrier are connected to terminals of the display panel by a second anistropic conductive film.
Abstract:
The related arts have difficulty in efficiently dissipating the heat generated by a resin-molded semiconductor element, and thus have the problem of thermal stress causing damage to the semiconductor element. To solve the problem, a semiconductor device of the preferred embodiments includes common leads coupled to an island, and a part of the common leads projects out from a resin seal body. The projecting common leads have a coupling portion. When mounting the semiconductor device, the common leads are bridged with brazing material. Thus, the heat generated by an integrated circuit chip mounted on the island is dissipated through the common leads to the outside of the resin seal body. In the preferred embodiments of the invention, a further improvement in heat dissipation characteristics can be accomplished by increasing the surface areas of the common leads.
Abstract:
A display device which provides reliable connection between a semiconductor device and a printed circuit board includes a display panel, a printed circuit board disposed close to the display panel, and a semiconductor device of a film carrier type which is disposed to lie between the display panel and the printed circuit board, and terminals of the semiconductor device are respectively connected by an anisotropic conductive film to terminals of the printed circuit board that are disposed in opposition to the respective terminals of the semiconductor device.